Administración y detección eficaz de fármacos por medio de dispositivos nanoestructurados tipo jaula: estudios teóricos y perspectivas

Contenido principal del artículo

Christian A. Celaya
http://orcid.org/0000-0001-9415-2766
Daniel G. Araiza
http://orcid.org/0000-0001-9556-8464
Miguel Reina
https://orcid.org/0000-0003-4959-4105

Resumen

Este artículo de revisión presenta el panorama actual del estudio de nanomateriales para aplicaciones relacionadas con la administración y detección de fármacos. Debido a los grandes avances en la fabricación y síntesis de nanomateriales, desde hace algunas décadas, estos sistemas aplicados al campo biomédico han constituido una revolución. En específico y debido a sus extraordinarias características fisicoquímicas, el estudio de pequeñas nanoestructuras con geometrías de jaulas cerradas de 24 átomos ha sido la motivación de un intenso trabajo desde la ciencia básica. Más aún, de entre las diversas potenciales áreas tecnológicas, estos sistemas han sido recurrentemente propuestos en aplicaciones relacionadas con la administración y detección de fármacos. Este trabajo de revisión se enfoca en los hallazgos teóricos más relevantes obtenidos por metodologías computacionales y más precisamente utilizando la teoría de funcionales de la densidad (TFD). El estudio de estos nanomateriales por métodos computacionales TDF ha constituido una estrategia exitosa, pues ha ayudado a mejorar el diseño de estos y a evaluar sus diversas propiedades. Estos hallazgos teóricos han guiado la síntesis y aplicación en sistemas biológicos reales.

Detalles del artículo

Cómo citar
Celaya, C. A., Araiza, D. G., & Reina, M. (2022). Administración y detección eficaz de fármacos por medio de dispositivos nanoestructurados tipo jaula: estudios teóricos y perspectivas. Mundo Nano. Revista Interdisciplinaria En Nanociencias Y Nanotecnología, 15(29), 1e-18e. https://doi.org/10.22201/ceiich.24485691e.2022.29.69731
Sección
Artículos de revisión

Citas

Abdolahi, Nafiseh, Mehrdad Aghaei, Alireza Soltani, Zivar Azmoodeh, Hanzaleh Balakheyli y Fatemeh Heidari. (2018). Adsorption of celecoxib on B12N12 fullerene: spectroscopic and DFT/TD-DFT study. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 204(nov.): 348-53. https://doi.org/10.1016/j.saa.2018.06.077

Allen, Theresa M. y Pieter R. Cullis. (2004). Drug delivery systems: entering the mainstream. Science, 303(5665): 1818-22. https://doi.org/10.1126/science.1095833

Alver, Özgür, Metin Bilge, Necip Atar, Cemal Parlak y Mustafa Şenyel. (2017). Interaction mechanisms and structural properties of MC19 (M = Si and Al) fullerenes with chlorophenylpiperazine isomers. Journal of Molecular Liquids, 231(abr.): 202-5. https://doi.org/10.1016/j.molliq.2017.01.100

Bakry, Rania, Rainer M. Vallant, Muhammad Najam-ul-Haq, Matthias Rainer, Zoltan Szabo, Christian W. Huck y Günther K. Bonn. (2007). Medicinal applications of fullerenes. International Journal of Nanomedicine, 2(4): 639-49.

Bayda, Sammer, Adeel, Muhammad, Tuccinardi, Tiziano, Cordani, Marco y Rizzolio, Flavio. (2020). The history of nanoscience and nanotechnology: from chemical-physical applications to nanomedicine. Molecules, 25: 112-127.

Chamundeeswari, Munusamy, Jeslin, John y Verma, Madan Lal. (2019). Nanocarriers for drug delivery applications. Environmental Chemistry Letters, 17: 849-865.

Celaya, Christian A., Luis Felipe Hernández-Ayala, Fernando Buendía Zamudio, Jorge A. Vargas y Miguel Reina. (2021). Adsorption of melphalan anticancer drug on C24, B12N12, B12C6N6, B6C12N12 and B6C6N12 nanocages: a comparative DFT study. Journal of Molecular Liquids, 329(mayo): 115528. https://doi.org/10.1016/j.molliq.2021.115528

Chigo-Anota, E., A. Escobedo-Morales, H. Hernández-Cocoletzi y J. G. López y López. (2015). Nitric oxide adsorption on non-stoichiometric boron nitride fullerene: structural stability, physicochemistry and drug delivery perspectives. Physica E: Low-Dimensional Systems and Nanostructures, 74(nov.): 538-43. https://doi.org/10.1016/j.physe.2015.08.008

Farmanzadeh, D y Keyhanian, M, 2019. Computational assessment on the interaction of amantadine drug with B12N12 and Zn12O12 nanocages and improvement in adsorption behaviors by impurity Al doping. Theorical Chemistry Accounts 138(1): 1-10. https://doi.org/10.1007/s00214-018-2400-3

Farrokhpour, Hossein, Hamidreza Jouypazadeh y Shirin Vakili Sohroforouzani. (2020). Interaction of different types of nanocages (Al12N12, Al12P12, B12N12, Be12O12, Mg12O12, Si12C12 and C12) with HCN and ClCN: DFT, TD-DFT, QTAIM, and NBO calculations. Molecular Physics 118 (4): 1626506. https://doi.org/10.1080/00268976.2019.1626506

Gu, Min, Qiming Zhang y Simone Lamon. (2016). Nanomaterials for optical data storage. Nature Reviews Materials, 1(12). https://doi.org/10.1038/natrevmats.2016.70

Hazrati, Mehrnoosh Khodam, Zargham Bagheri y Ali Bodaghi. (2017). Application of C30B15N15 heterofullerene in the isoniazid drug delivery: DFT studies. Physica E: Low-Dimensional Systems and Nanostructures, 89(ene.): 72-76. https://doi.org/10.1016/j.physe.2017.02.009

Hoang Thi, Thai Thanh, Emily H Pilkington, Dai Hai Nguyen, Jung Seok Lee, Ki Dong Park y Nghia P. Truong. (2020). The importance of poly(ethylene glycol) alternatives for overcoming PEG immunogenicity in drug delivery and bioconjugation. Polymers, 12(2): 298. https://doi.org/10.3390/polym12020298

Hossain, Md Rakib, Md Mehade Hasan, Maliha Nishat, Noor-E-Ashrafi, Farid Ahmed, Tahmina Ferdous y Md Abul Hossain. (2021). DFT and QTAIM investigations of the adsorption of chlormethine anticancer drug on the exterior surface of pristine and transition metal functionalized boron nitride fullerene. Journal of Molecular Liquids, 323(febr.): 114627. https://doi.org/10.1016/j.molliq.2020.114627

Hosseini, Javad, Abdollah Rastgou y Reza Moradi. (2017). F-encapsulated B12N12 fullerene as an anode for li-ion batteries: a theoretical study. Journal of Molecular Liquids, 225(ene.): 913-18. https://doi.org/10.1016/j.molliq.2016.11.025

Javan, Masoud Bezi, Alireza Soltani, Zivar Azmoodeh, Nafiseh Abdolahi y Niloofar Gholami. (2016). A DFT study on the interaction between 5-fluorouracil and B12N12 nanocluster. RSC Advances, 6(106): 104513-21. https://doi.org/10.1039/C6RA18196A

Jouypazadeh, Hamidreza y Hossein Farrokhpour. (2018). DFT and TD-DFT study of the adsorption and detection of sulfur mustard chemical warfare agent by the C24, C12Si12, Al12N12, Al12P12, Be12O12, B12N12 and Mg12O12 nanocages. Journal of Molecular Structure, 1164(jul.): 227-38. https://doi.org/10.1016/j.molstruc.2018.03.051

Kamali, Farid, Gholamreza Ebrahimzadeh Rajaei, Sahar Mohajeri, Ali Shamel y Mohammad Khodadadi-Moghaddam. (2020). Adsorption behavior of metformin drug on the C60 and C48 nanoclusters: a comparative DFT study. Monatshefte Für Chemie – Chemical Monthly, 151(5): 711-20. https://doi.org/10.1007/s00706-020-02597-3

Kaviani, Sadegh, Siyamak Shahab, Masoome Sheikhi, Vladimir Potkin y Hongwei Zhou. (2021). A DFT study of se-decorated B12N12 nanocluster as a possible drug delivery system for ciclopirox. Computational and Theoretical Chemistry, 1201(marzo): 113246. https://doi.org/10.1016/j.comptc.2021.113246

Khezri, Behrooz, Maryam Maskanati, Nahal Ghanemnia, Masoumeh Shabani Gokeh, Sina Rezaei y Lan Chang. (2021). Efficient detection of thioguanine drug using boron nitride nanocage: DFT outlook of solvent effect and AIM analysis. Inorganic Chemistry Communications, 134(oct.): 109015. https://doi.org/10.1016/j.inoche.2021.109015

Kian, Mahboobeh y Elham Tazikeh-Lemeski. (2020). B12Y12 (Y: N, P) fullerene-like cages for exemestane-delivery; molecular modeling investigation. Journal of Molecular Structure, 1217(oct.): 128455. https://doi.org/10.1016/j.molstruc.2020.128455

Kroto, H. W., J. R. Heath, S. C. O’Brien, R. F. Curl y R. E. Smalley. (1985). C60: Buckminsterfullerene. Nature, 318(6042): 162-63. https://doi.org/10.1038/318162a0

Mahamiya, Vikram, Alok Shukla y Brahmananda Chakraborty. (2022). Scandium decorated C24 fullerene as high capacity reversible hydrogen storage material: insights from density functional theory simulations. Applied Surface Science, 573(oct. 2021): 151389. https://doi.org/10.1016/j.apsusc.2021.151389

Mias, Solon, Jan Sudor y Henri Camon. (2008). PNIPAM: a thermo-activated nano-material for use in optical devices. Microsystem Technologies, 14(6): 747-51. https://doi.org/10.1007/s00542-007-0457-3

Minzenberg, Michael J. y Cameron S. Carter. (2008). Modafinil: a review of neurochemical actions and effects on cognition. Neuropsychopharmacology, 33(7): 1477-1502. https://doi.org/10.1038/sj.npp.1301534

Oku, Takeo, Masaki Kuno, Hidehiko Kitahara y Ichihito Narita. (2001). Formation, atomic structures and properties of boron nitride and carbon nanocage fullerene materials. International Journal of Inorganic Materials, 3(7): 597-612. https://doi.org/10.1016/S1466-6049(01)00169-6

Onsori, Saeid y Elham Alipour. (2018). A theoretical investigation on the adsorption of platinol drug on a ZnO nanocluster: solvent and density functional effect. Journal of Molecular Liquids, 256: 558-64. https://doi.org/10.1016/j.molliq.2018.02.041

Padash, R., A. Sobhani-Nasab, M. Rahimi-Nasrabadi, M. Mirmotahari, H. Ehrlich, A. S. Rad y M. Peyravi. (2018). Is it possible to use X12Y12 (X = Al, B and Y = N, P) nanocages for drug-delivery systems? a DFT study on the adsorption property of 4-aminopyridine drug. Applied Physics A: Materials Science and Processing, 124(9): 1-11. https://doi.org/10.1007/s00339-018-1965-y

Ravaei, Isa, Mojtaba Haghighat y S.M. Azami. (2019). A DFT, AIM and NBO study of isoniazid drug delivery by MgO nanocage. Applied Surface Science 469, (oct. 2018): 103-12. https://doi.org/10.1016/j.apsusc.2018.11.005

Reina, Miguel, Christian A. Celaya y Jesús Muñiz. (2021). C36 and C35E (E = N and B) fullerenes as potential nanovehicles for neuroprotective drugs: a comparative DFT study. ChemistrySelect, 6(19): 4844-58. https://doi.org/10.1002/slct.202101227

Reina, Miguel, Christian A. Celaya y Jesús Muñiz. (2019). CN and CN−1B fullerenes as potential nanovehicles for piribedil neuroprotective drug (N = 20, 36 and 60). Chemistry Select, 4(47): 13916-25. https://doi.org/10.1002/slct.201904211

Salvador-Morales, Carolina, Elena V. Basiuk, Vladimir A. Basiuk, Malcolm L. H. Green y Robert B. Sim. (2008). Effects of covalent functionalization on the biocompatibility characteristics of multi-walled carbon nanotubes. Journal of Nanoscience and Nanotechnology, 8(5): 2347-56. https://doi.org/10.1166/jnn.2008.090

Santosh, Mogurampelly, Swati Panigrahi, Dhananjay Bhattacharyya, A. K. Sood y Prabal K. Maiti. (2012). Unzipping and binding of small interfering RNA with single walled carbon nanotube: a platform for small interfering RNA delivery. The Journal of Chemical Physics, 136(6): 065106. https://doi.org/10.1063/1.3682780

Schuster, David I., Stephen R. Wilson y Raymond F. Schinazi. (1996). Anti-human immunodeficiency virus activity and cytotoxicity of derivatized buckminsterfullerenes. Bioorganic & Medicinal Chemistry Letters, 6(11): 1253-56. https://doi.org/10.1016/0960-894X(96)00210-7

Shamim, Siraj Ud Daula, Md Helal Miah, Md Rakib Hossain, Md Mehade Hasan, Md Kamal Hossain, Md Abul Hossain y Farid Ahmed. (2022). Theoretical investigation of emodin conjugated doped B12N12 nanocage by means of DFT, QTAIM and PCM analysis. Physica E: Low-Dimensional Systems and Nanostructures, 136(oct. 2021): 115027. https://doi.org/10.1016/j.physe.2021.115027

Soliman, Kamal A. y S. Abdel Aal. (2021). Theoretical investigation of favipiravir antiviral drug based on fullerene and boron nitride nanocages. Diamond and Related Materials, 117(mayo): 108458. https://doi.org/10.1016/j.diamond.2021.108458

Varghese, Seba S., Sunil Lonkar, K.K. Singh, Sundaram Swaminathan y Ahmed Abdala. (2015). Recent advances in graphene based gas sensors. Sensors and Actuators B: Chemical, 218(oct.): 160-83. https://doi.org/10.1016/j.snb.2015.04.062

Vessally, Esmail, Mehdi D. Esrafili, Roghaye Nurazar, Parisa Nematollahi y Ahmadreza Bekhradnia. (2017). A DFT study on electronic and optical properties of aspirin-functionalized B12N12 fullerene-like nanocluster. Structural Chemistry, 28(3): 735-748. https://doi.org/10.1007/s11224-016-0858-y

Wazzan, Nuha, Kamal A. Soliman y W. S. Abdel Halim. (2019). Theoretical study of gallium nitride nanocage as a carrier for 5-fluorouracil anticancer drug. Journal of Molecular Modeling, 25(9): 265. https://doi.org/10.1007/s00894-019-4147-8

Zhi, C. Y., Y. Bando, C. C. Tang, Q. Huang y D. Golberg. (2008). Boron nitride nanotubes: functionalization and composites. Journal of Materials Chemistry, 18(33): 3900. https://doi.org/10.1039/b804575e

Zhu, Hang, Chengfei Zhao, Qihong Cai, Xianming Fu y Fatima Rashid Sheykhahmad. (2020). Adsorption behavior of 5-aminosalicylic acid drug on the B12N12, AlB11N12 and GaB11N12 nanoclusters: a comparative DFT study. Inorganic Chemistry Communications, 114(nov., 2019): 107808. https://doi.org/10.1016/j.inoche. 2020.107808