Tessellations on bidimensional materials based on phthalocyanine and applications: a review
Contenido principal del artículo
Resumen
In this review, we explore the bidimensional materials based on phthalocyanine molecules. The phthalocyanine molecule is used as a brick for the construction of new bidimensional materials. In particular, the phthalocyanine molecules can be placed at each vertex or sharing edges to form tessellations. The tessellations available are constrained to the four-fold type of the phthalocyanine molecules and can be a mix of several polygons to increase the number of possibilities. Computationally, the popular tessellations used are the Archimedean tiling, but many others expect to be discovered and well-studied. Different tessellations will provide new symmetric systems to explore. Each new symmetry pattern will modify the physical and chemical properties of the new bi-dimensional material. These new materials present many exciting applications as capture and storage of greenhouse gases and molecular electronic devices. In the present review, we summarized some of these tessellations and the many applications that they can have.
Descargas
Detalles del artículo
Mundo Nano. Revista Interdisciplinaria en Nanociencias y Nanotecnología, editada por la Universidad Nacional Autónoma de México, se distribuye bajo una Licencia Creative Commons Atribución-NoComercial 4.0 Internacional.
Basada en una obra en http://www.mundonano.unam.mx.
Citas
Acun, A., L. Zhang, P. Bampoulis, M. Farmanbar, A. van Houselt, A. N. Rudenko, M. Lingenfelder et al. (2015). Germanene: the germanium analogue of graphene. Journal of Physics: Condensed Matter, 27 (44): 443002. https://doi.org/10.1088/0953-8984/27/44/443002 DOI: https://doi.org/10.1088/0953-8984/27/44/443002
Aimi, Junko, Po-Hung Wang, Chien-Chung Shih, Chih-Feng Huang, Takashi Nakanishi, Masayuki Takeuchi, Han-Yu Hsueh and Wen-Chang Chen. (2018). A star polymer with a metallo-phthalocyanine core as a tunable charge storage material for nonvolatile transistor memory devices. Journal of Materials Chemistry C, 6 (11): 2724-32. https://doi.org/10.1039/c7tc05790c DOI: https://doi.org/10.1039/C7TC05790C
Ajayan, Pulickel, Philip Kim and Kaustav Banerjee. (2016). Two-dimensional van Der Waals materials. Physics Today, 69 (9): 38-44. https://doi.org/10.1063/pt.3.3297 DOI: https://doi.org/10.1063/PT.3.3297
Allen, Matthew J., Vincent C. Tung and Richard B. Kaner. (2010). Honeycomb carbon: a review of graphene. Chemical Reviews, 110 (1): 132-45. https://doi.org/10.1021/cr900070d DOI: https://doi.org/10.1021/cr900070d
Araki, Koiti and Eisi Toma. (2006). Supramolecular porphyrins as electrocatalysts. En Jose H Zagal, Fethi Bedioui y Jean-Pol Dodelet (eds.), N4-Macrocyclic metal complexes. Switzerland: Springer, 255-314. DOI: https://doi.org/10.1007/978-0-387-28430-9_6
Araujo Matias, Tiago, Gianluca Camillo Azzellini, Lucio Angnes and Koiti Araki. (2016). Supramolecular hybrid organic/inorganic nanomaterials based on metalloporphyrins and phthalocyanines. En Jose H. Zagal and Fethi Bedioui (eds.), Electrochemistry of N4 macrocyclic metal complexes. Volume 2: Biomimesis, electroanalysis and electrosynthesis of MN4 metal complexes. Switzerland: Springer, 1-82. DOI: https://doi.org/10.1007/978-3-319-31332-0_1
Balendhran, Sivacarendran, Sumeet Walia, Hussein Nili, Sharath Sriram and Madhu Bhaskaran. (2014). Elemental analogues of graphene: silicene, germanene, stanene, and phosphorene. Small, 11 (6): 640-52. https://doi.org/10.1002/smll.201402041 DOI: https://doi.org/10.1002/smll.201402041
Bischoff, Felix, Yuanqin He, Knud Seufert, Daphné Stassen, Davide Bonifazi, Johannes V. Barth and Willi Auwärter. (2016). Tailoring large pores of porphyrin networks on Ag (111) by metal-organic coordination. Chemistry – a European Journal, 22 (43): 15298-306. https://doi.org/10.1002/chem.201602154 DOI: https://doi.org/10.1002/chem.201602154
Biswal, Bishnu P., Sreeramulu Valligatla, Mingchao Wang, Tanmay Banerjee, Nabil A. Saad, Bala Murali Krishna Mariserla, Naisa Chandrasekhar et al. (2019a). Nonlinear optical switching in regioregular porphyrin covalent organic frameworks. Angewandte Chemie International Edition, 58 (21): 6896-6900. https://doi.org/10.1002/anie.201814412 DOI: https://doi.org/10.1002/anie.201814412
Biswal, Bishnu P., Hugo A. Vignolo-González, Tanmay Banerjee, Lars Grunenberg, Gökcen Savasci, Kerstin Gottschling, Jürgen Nuss, Christian Ochsenfeld and Bettina V. Lotsch. (2019b). Sustained solar H2 evolution from a thiazolo[5,4-d]thiazole-bridged covalent organic framework and nickel-thiolate cluster in water. Journal of the American Chemical Society, 141 (28): 11082-92. https://doi.org/10.1021/jacs.9b03243 DOI: https://doi.org/10.1021/jacs.9b03243
Carvalho, Alexandra, Min Wang, Xi Zhu, Aleksandr S. Rodin, Haibin Su and Antonio H. Castro Neto. (2016). Phosphorene: from theory to applications. Nature Reviews Materials, 1(11). https://doi.org/10.1038/natrevmats.2016.61 DOI: https://doi.org/10.1038/natrevmats.2016.61
Chen, Jun, Caijian Zhu, Yong Xu, Pengwei Zhang y Tongxiang Liang. (2018). Advances in phthalocyanine compounds and their photochemical and electrochemical properties. Current Organic Chemistry, 22(5): 485-504. https://doi.org/10.2174/1385272821666171002122055 DOI: https://doi.org/10.2174/1385272821666171002122055
Cirera, Borja, Nelson Giménez-Agulló, Jonas Björk, Francisco Martínez-Peña, Alberto Martin-Jimenez, Jonathan Rodriguez-Fernandez, Ana M. Pizarro et al. (2016). Thermal selectivity of intermolecular versus intramolecular reactions on surfaces. Nature Communications, 7(1). https://doi.org/10.1038/ncomms11002 DOI: https://doi.org/10.1038/ncomms11002
Côté, A. P. (2005). Porous, crystalline, covalent organic frameworks. Science, 310(5751): 1166-70. https://10.1126/science.1120411 DOI: https://doi.org/10.1126/science.1120411
De Luna, Phil De, Christopher Hahn, Drew Higgins, Shaffiq A. Jaffer, Thomas F. Jaramillo and Edward H. Sargent. (2019). What would it take for renewably powered electrosynthesis to displace petrochemical processes? Science, 364(6438). https://doi.org/10.1126/science.aav3506 DOI: https://doi.org/10.1126/science.aav3506
De Siddhartha, Thomas Devic and Alexandra Fateeva. (2021). Porphyrin and phthalocyanine-based metal organic frameworks beyond metal-carboxylates. Dalton Transactions, 50 (4): 1166-88. https://doi.org/10.1039/d0dt03903a DOI: https://doi.org/10.1039/D0DT03903A
Demirol, Murat, Lütfiye Sirka, Eray Çalışkan, Fatih Biryan, Kenan Koran, Ahmet Orhan Görgülü and Fahrettin Yakuphanoğlu. (2020). Synthesis and photodiode properties of chalcone substituted metallo-phthalocyanine. Journal of Molecular Structure, 1219(1): 128571. https://doi.org/10.1016/j.molstruc.2020.128571 DOI: https://doi.org/10.1016/j.molstruc.2020.128571
Dibetsoe, Masego, Lukman Olasunkanmi, Omolola Fayemi, Sasikumar Yesudass, Baskar Ramaganthan, Indra Bahadur, Abolanle Adekunle, Mwadham Kabanda and Eno Ebenso. (2015). Some phthalocyanine and naphthalocyanine derivatives as corrosion inhibitors for aluminium in acidic medium: experimental, quantum chemical calculations, QSAR studies and synergistic effect of iodide Ions. Molecules, 20(9): 15701-34. https://doi.org/10.3390/molecules200915701 DOI: https://doi.org/10.3390/molecules200915701
Ding, San-Yuan and Wei Wang. (2013). Covalent organic frameworks (COFs): from design to applications. Chem. Soc. Rev., 42(2): 548-68. https://doi.org/10.1039/c2cs35072f DOI: https://doi.org/10.1039/C2CS35072F
Dogru, Mirjam, Matthias Handloser, Florian Auras, Thomas Kunz, Dana Medina, Achim Hartschuh, Paul Knochel and Thomas Bein. (2013). A photoconductive thienothiophene-based covalent organic framework showing charge transfer towards included fullerene. Angewandte Chemie International Edition, 52(10): 2920-24. https://doi.org/10.1002/anie.201208514 DOI: https://doi.org/10.1002/anie.201208514
Erisman, Jan Willem, Mark A. Sutton, James Galloway, Zbigniew Klimont and Wilfried Winiwarter. (2008). How a century of ammonia synthesis changed the world. Nature Geoscience, 1(10): 636-39. https://doi.org/10.1038/ngeo325 DOI: https://doi.org/10.1038/ngeo325
Farajzadeh, Nazli, Göknur Yaşa Atmaca, Ali Erdoğmuş and Makbule Burkut Koçak. (2021). Comparatively singlet oxygen efficiency by sono-photochemical and photochemical studies of new lutetium (III) phthalocyanines. Dyes and Pigments, 190(1): 109325. https://doi.org/10.1016/j.dyepig.2021.109325 DOI: https://doi.org/10.1016/j.dyepig.2021.109325
Feng, Xiao, Xuesong Ding and Donglin Jiang. (2012). Covalent organic frameworks. Chemical Society Reviews, 41(18): 6010. https://doi.org/10.1039/c2cs35157a DOI: https://doi.org/10.1039/c2cs35157a
Foster, Christopher, Jeseelan Pillay, Jonathan Metters and Craig Banks. (2014). Cobalt phthalocyanine modified electrodes utilised in electroanalysis: nano-structured modified electrodes vs bulk modified screen-printed electrodes. Sensors, 14(11): 21905-22. https://doi.org/10.3390/s141121905 DOI: https://doi.org/10.3390/s141121905
Galloway, J. N., A. R. Townsend, J. W. Erisman, M. Bekunda, Z. Cai, J. R. Freney, L. A. Martinelli, S. P. Seitzinger and M. A. Sutton. (2008). Transformation of the nitrogen cycle: recent trends, questions, and potential solutions. Science, 320(5878): 889-92. https://doi.org/10.1126/science.1136674 DOI: https://doi.org/10.1126/science.1136674
Gao, Yijing, Yongyong Cao, Han Zhuo, Xiang Sun, Yongbing Gu, Guilin Zhuang, Shengwei Deng et al. (2020). Mo2TiC2 MXene: a promising catalyst for electrocatalytic ammonia synthesis. Catalysis Today, 339(1): 120-26. https://doi.org/10.1016/j.cattod.2018.12.029 DOI: https://doi.org/10.1016/j.cattod.2018.12.029
Geng, Keyu, Ting He, Ruoyang Liu, Sasanka Dalapati, Ke Tian Tan, Zhongping Li, Shanshan Tao, Yifan Gong, Qiuhong Jiang and Donglin Jiang. (2020). Covalent organic frameworks: design, synthesis, and functions. Chemical Reviews, 120(16): 8814-8933. https://doi.org/10.1021/acs.chemrev.9b00550 DOI: https://doi.org/10.1021/acs.chemrev.9b00550
Gorduk, Ozge, Metin Gencten, Semih Gorduk, Mutlu Sahin and Yucel Sahin. (2021). Electrochemical fabrication and supercapacitor performances of metallo phthalocyanine/functionalized-multiwalled carbon nanotube/polyaniline modified hybrid electrode materials. Journal of Energy Storage, 33(1): 102049. https://doi.org/10.1016/j.est.2020.102049 DOI: https://doi.org/10.1016/j.est.2020.102049
Gregory, Peter. (2000). Industrial applications of phthalocyanines. Journal of Porphyrins and Phthalocyanines, 04(04): 432-37. https://doi.org/10.1002/(SICI)1099-1409(200006/07)4:4<432::AID-JPP254>3.0.CO;2-N DOI: https://doi.org/10.1002/(SICI)1099-1409(200006/07)4:4<432::AID-JPP254>3.0.CO;2-N
Guo, Jia, Yanhong Xu, Shangbin Jin, Long Chen, Toshihiko Kaji, Yoshihito Honsho, Matthew A. Addicoat et al. (2013). Conjugated organic framework with three-dimensionally ordered stable structure and delocalized π clouds. Nature Communications, 4(1). https://doi.org/10.1038/ncomms3736 DOI: https://doi.org/10.1038/ncomms3736
Haase, Frederik, Erik Troschke, Gökcen Savasci, Tanmay Banerjee, Viola Duppel, Susanne Dörfler, Martin M. J. Grundei et al. (2018). Topochemical conversion of an imine- into a thiazole-linked covalent organic framework enabling real structure analysis. Nature Communications, 9(1): 2600. https://doi.org/10.1038/s41467-018-04979-y DOI: https://doi.org/10.1038/s41467-018-04979-y
Hou, Keyu, Lei Huang, Yongbo Qi, Caixia Huang, Haibo Pan and Min Du. (2015). A bisphenol a sensor based on novel self-assembly of zinc phthalocyanine tetrasulfonic acid-functionalized graphene nanocomposites. Materials Science and Engineering: C, 49(1): 640-47. https://doi.org/10.1016/j.msec.2015.01.064 DOI: https://doi.org/10.1016/j.msec.2015.01.064
Huang, Chun-Xiang, Guoliang Li, Li-Ming Yang and Eric Ganz. (2021). Amonia synthesis using single-atom catalysts based on two-dimensional organometallic metal phthalocyanine monolayers under ambient conditions. ACS Applied Materials & Interfaces, 13(1): 608-21. https://doi.org/10.1021/acsami.0c18472 DOI: https://doi.org/10.1021/acsami.0c18472
Ishihara, Shinsuke, Jan Labuta, Wim van Rossom, Daisuke Ishikawa, Kosuke Minami, Jonathan P. Hill and Katsuhiko Ariga. (2014). Porphyrin-based sensor nanoarchitectonics in diverse physical detection modes. Physical Chemistry Chemical Physics, 16(21): 9713. https://doi.org/10.1039/c3cp55431g DOI: https://doi.org/10.1039/c3cp55431g
Jia, Hongxing, Yuchuan Yao, Jiangtao Zhao, Yuyue Gao, Zhenlin Luo and Pingwu Du. (2018). A novel two-dimensional nickel phthalocyanine-based metal–organic framework for highly efficient water oxidation catalysis. Journal of Materials Chemistry A, 6(3): 1188-95. https://doi.org/10.1039/c7ta07978h DOI: https://doi.org/10.1039/C7TA07978H
Jin, Yinghua, Yiming Hu and Wei Zhang. (2017). Tessellated multiporous two-dimensional covalent organic frameworks. Nature Reviews Chemistry, 1(7). https://doi.org/10.1038/s41570-017-0056 DOI: https://doi.org/10.1038/s41570-017-0056
Kubicki, Milan, Susi Lindner-Franz, Mario Dähne and Martin Franz. (2021). Growth of ordered two-dimensional cobalt phthalocyanine films on a one-dimensional substrate. Applied Physics Letters, 119(13): 133105. https://doi.org/10.1063/5.0062026 DOI: https://doi.org/10.1063/5.0062026
Li, Xiao-Fei, Qin-Kun Li, Jin Cheng, Lingling Liu, Qing Yan, Yingchao Wu, Xiang-Hua Zhang, Zhi-Yong Wang, Qi Qiu and Yi Luo. (2016). Conversion of dinitrogen to ammonia by FeN3-embedded graphene. Journal of the American Chemical Society, 138(28): 8706-9. https://doi.org/10.1021/jacs.6b04778 DOI: https://doi.org/10.1021/jacs.6b04778
Lin, Song, Christian S. Diercks, Yue-Biao Zhang, Nikolay Kornienko, Eva M. Nichols, Yingbo Zhao, Aubrey R. Paris et al. (2015). Covalent organic frameworks comprising cobalt porphyrins for catalytic CO2 reduction in water. Science, 349(6253): 1208-13. https://doi.org/10.1126/science.aac8343 DOI: https://doi.org/10.1126/science.aac8343
Liu, Shiqiang, Yawei Liu, Xiaoping Gao, Yujia Tan, Zhemin Shen and Maohong Fan. (2020). First principle study of feasibility of dinitrogen reduction to ammonia on two-dimensional transition metal phthalocyanine monolayer. Applied Surface Science, 500(1): 144032. https://doi.org/10.1016/j.apsusc.2019.144032 DOI: https://doi.org/10.1016/j.apsusc.2019.144032
Lu, Shuanglong, Yiming Hu, Shun Wan, Ryan McCaffrey, Yinghua Jin, Hongwei Gu and Wei Zhang. (2017). Synthesis of ultrafine and highly dispersed metal nanoparticles confined in a thioether-containing covalent organic framework and their catalytic applications. Journal of the American Chemical Society, 139(47): 17082-88. https://doi.org/10.1021/jacs.7b07918 DOI: https://doi.org/10.1021/jacs.7b07918
Manbeck, Gerald F. and Etsuko Fujita. (2015). A review of iron and cobalt porphyrins, phthalocyanines and related complexes for electrochemical and photochemical reduction of carbon dioxide. Journal of Porphyrins and Phthalocyanines, 19(01-03): 45-64. https://doi.org/10.1142/s1088424615300013 DOI: https://doi.org/10.1142/S1088424615300013
Matheu, Roc, Enrique Gutierrez-Puebla, M. Ángeles Monge, Christian S. Diercks, Joohoon Kang, Mathieu S. Prévot, Xiaokun Pei et al. (2019). Three-dimensional phthalocyanine metal-catecholates for high electrochemical carbon dioxide reduction. Journal of the American Chemical Society, 141(43): 17081-85. https://doi.org/10.1021/jacs.9b09298 DOI: https://doi.org/10.1021/jacs.9b09298
Meng, Zheng, Robert M. Stolz and Katherine A. Mirica. (2019). Two-dimensional chemiresistive covalent organic framework with high intrinsic conductivity. Journal of the American Chemical Society, 141(30): 11929-37. https://doi.org/10.1021/jacs.9b03441 DOI: https://doi.org/10.1021/jacs.9b03441
Molla, Mijanur Rahaman and Suhrit Ghosh. (2014). Aqueous self-assembly of chromophore-conjugated amphiphiles. Phys. Chem. Chem. Phys., 16(48): 26672-83. https://doi.org/10.1039/c4cp03791j DOI: https://doi.org/10.1039/C4CP03791J
Montoya, Joseph H., Linsey C. Seitz, Pongkarn Chakthranont, Aleksandra Vojvodic, Thomas F. Jaramillo and Jens K. Nørskov. (2016). Materials for solar fuels and chemicals. Nature Materials, 16(1): 70-81. https://doi.org/10.1038/nmat4778 DOI: https://doi.org/10.1038/nmat4778
Müller, E. (1944). Group theory and structure-analysis studies of the Moorish ornamentation of the Alhambra in Granada.
Nagatomi, Hisanori, Nobuhiro Yanai, Teppei Yamada, Kanji Shiraishi and Nobuo Kimizuka. (2018). Synthesis and electric properties of a two-dimensional metal-organic framework based on phthalocyanine. Chemistry – a European Journal, 24(8): 1806-10. https://doi.org/10.1002/chem.201705530 DOI: https://doi.org/10.1002/chem.201705530
Pizarro, Ana, Gabriel Abarca, Cristian Gutiérrez-Cerón, Diego Cortés-Arriagada, Fabiano Bernardi, Cristhian Berrios, Juan F. Silva et al. (2018). Building pyridinium molecular wires as axial ligands for tuning the electrocatalytic activity of iron phthalocyanines for the oxygen reduction reaction. ACS Catalysis, 8(9): 8406-19. https://doi.org/10.1021/acscatal.8b01479 DOI: https://doi.org/10.1021/acscatal.8b01479
Ramos, Aline, Francisco Nascimento, Thaiza de Souza, Alvaro Omori, Tânia Manieri, Giselle Cerchiaro and Anderson Ribeiro. (2015). Photochemical and photophysical properties of phthalocyanines modified with optically active alcohols. Molecules, 20(8): 13575-90. https://doi.org/10.3390/molecules200813575 DOI: https://doi.org/10.3390/molecules200813575
Ren, Xinlin, Peichao Lian, Delong Xie, Ying Yang, Yi Mei, Xiangrun Huang, Zirui Wang and Xiting Yin. (2017). Properties, preparation and application of black phosphorus/phosphorene for energy storage: a review. Journal of Materials Science, 52(17): 10364-86. https://doi.org/10.1007/s10853-017-1194-3 DOI: https://doi.org/10.1007/s10853-017-1194-3
Shinde, Digambar Balaji, Sharath Kandambeth, Pradip Pachfule, Raya Rahul Kumar and Rahul Banerjee. (2015). Bifunctional covalent organic frameworks with two dimensional organocatalytic micropores. Chemical Communications, 51(2): 310-13. https://doi.org/10.1039/c4cc07104b DOI: https://doi.org/10.1039/C4CC07104B
Sick, Torben, Alexander G. Hufnagel, Jonathan Kampmann, Ilina Kondofersky, Mona Calik, Julian M. Rotter, Austin Evans et al. (2018). Oriented films of conjugated 2D covalent organic frameworks as photocathodes for water splitting. Journal of the American Chemical Society, 140(6): 2085-92. https://doi.org/10.1021/jacs.7b06081 DOI: https://doi.org/10.1021/jacs.7b06081
Sorokin, Alexander B. (2013). Phthalocyanine metal complexes in catalysis. Chemical Reviews, 113(10): 8152-91. https://doi.org/10.1021/cr4000072 DOI: https://doi.org/10.1021/cr4000072
Spitler, Eric L. and William R. Dichtel. (2010). Lewis acid-catalysed formation of two-dimensional phthalocyanine covalent organic frameworks. Nature Chemistry, 2(8): 672-77. https://doi.org/10.1038/nchem.695 DOI: https://doi.org/10.1038/nchem.695
Sun, Jie, Xuejian Li, Weiling Guo, Miao Zhao, Xing Fan, Yibo Dong, Chen Xu, Jun Deng and Yifeng Fu. (2017). Synthesis methods of two-dimensional MoS2: a brief review. Crystals, 7(7): 198. https://doi.org/10.3390/cryst7070198 DOI: https://doi.org/10.3390/cryst7070198
Sun, Qiang, Chi Zhang, Liangliang Cai, Lei Xie, Qinggang Tan and Wei Xu. (2015). On-surface formation of two-dimensional polymer via direct C–H activation of metal phthalocyanine. Chemical Communications, 51(14): 2836-39. https://doi.org/10.1039/c4cc08299k DOI: https://doi.org/10.1039/C4CC08299K
Sun, Qiang, Chi Zhang, Huihui Kong, Qinggang Tan and Wei Xu. (2014). On-surface aryl–aryl coupling via selective C–H activation. Chem. Commun., 50(80): 11825-28. https://doi.org/10.1039/c4cc05482b DOI: https://doi.org/10.1039/C4CC05482B
Teixeira, Raquel, Vanda Vaz Serra, David Botequim, Pedro M. R. Paulo, Suzana M. Andrade and Sílvia M. B. Costa. (2021). Fluorescence spectroscopy of porphyrins and phthalocyanines: some insights into supramolecular self-assembly, microencapsulation, and imaging microscopy. Molecules, 26(14): 4264. https://doi.org/10.3390/molecules26144264 DOI: https://doi.org/10.3390/molecules26144264
Toma, Henrique E. and Koiti Araki. (2009). Exploring the supramolecular coordination chemistry-based approach for nanotechnology. En Kenneth D. Karlin (ed.), Progress in Inorganic Chemistry. John Wiley & Sons. DOI: https://doi.org/10.1002/9780470440124.ch5
Torre, Gema de la, Giovanni Bottari, Michael Sekita, Anita Hausmann, Dirk M. Guldi and Tomás Torres. (2013). A voyage into the synthesis and photophysics of homo- and heterobinuclear ensembles of phthalocyanines and porphyrins. Chemical Society Reviews, 42(20): 8049. https://doi.org/10.1039/c3cs60140d DOI: https://doi.org/10.1039/c3cs60140d
Wang, Mingchao, Marco Ballabio, Mao Wang, Hung-Hsuan Lin, Bishnu P. Biswal, Xiaocang Han, Silvia Paasch et al. (2019). Unveiling electronic properties in metal–phthalocyanine-based pyrazine-linked conjugated two-dimensional covalent organic frameworks. Journal of the American Chemical Society, 141(42): 16810-16. https://doi.org/10.1021/jacs.9b07644 DOI: https://doi.org/10.1021/jacs.9b07644
Wang, Yu, Hao Yuan, Yafei Li and Zhongfang Chen. (2015). Two-dimensional iron-phthalocyanine (Fe-Pc) monolayer as a promising single-atom-catalyst for oxygen reduction reaction: a computational study. Nanoscale, 7(27): 11633-41. https://doi.org/10.1039/c5nr00302d DOI: https://doi.org/10.1039/C5NR00302D
Williams, Andrew and Thomas Siegmund. (2021). Mechanics of topologically interlocked material systems under point load: archimedean and laves tiling. International Journal of Mechanical Sciences, 190(1): 106016. https://doi.org/10.1016/j.ijmecsci.2020.106016 DOI: https://doi.org/10.1016/j.ijmecsci.2020.106016
Xu, Fei, Hong Xu, Xiong Chen, Dingcai Wu, Yang Wu, Hao Liu, Cheng Gu, Ruowen Fu and Donglin Jiang. (2015). radical covalent organic frameworks: a general strategy to immobilize open-accessible polyradicals for high-performance capacitive energy storage. Angewandte Chemie, 127(23): 6918-22. https://doi.org/10.1002/ange.201501706 DOI: https://doi.org/10.1002/ange.201501706
Yaghi, Omar M., Markus J. Kalmutzki, Christian S. Diercks and Wiley-Vch. (2019). Introduction to reticular chemistry metal-organic frameworks and covalent organic frameworks. Weinheim, Germany Wiley-Vch. DOI: https://doi.org/10.1002/9783527821099
Yang, Tongtong, Shaobin Tang, Xiyu Li, Edward Sharman, Jun Jiang and Yi Luo. (2018). Graphene oxide-supported transition metal catalysts for di-nitrogen reduction. The Journal of Physical Chemistry C, 122(44): 25441-46. https://doi.org/10.1021/acs.jpcc.8b08149 DOI: https://doi.org/10.1021/acs.jpcc.8b08149
Yu, Minghao, Renhao Dong and Xinliang Feng. (2020). Two-dimensional carbon-rich conjugated frameworks for electrochemical energy applications. Journal of the American Chemical Society, 142(30): 12903-15. https://doi.org/10.1021/jacs.0c05130 DOI: https://doi.org/10.1021/jacs.0c05130
Zhang, Jian, Yaowen Li, Laibing Wang, Michiya Fujiki, Xiaopeng Li, Zhengbiao Zhang, Wei Zhang, Nianchen Zhou and Xiulin Zhu. (2014). Supramolecular self-assembly and photovoltaic property of soluble fluorogallium phthalocyanine. RSC Adv., 4(56): 29485-92. https://doi.org/10.1039/c4ra03941f DOI: https://doi.org/10.1039/C4RA03941F
Zhao, Wanghui, Lifu Zhang, Qiquan Luo, Zhenpeng Hu, Wenhua Zhang, Sean Smith and Jinlong Yang. (2019). Single Mo1(Cr1) atom on nitrogen-doped graphene enables highly selective electroreduction of nitrogen into ammonia. ACS Catalysis, 9(4): 3419-25. https://doi.org/10.1021/acscatal.8b05061 DOI: https://doi.org/10.1021/acscatal.8b05061
Zhong, Yong, Shuanghong Liu, Jiefei Wang, Wenzhi Zhang, Tian Tian, Jiajie Sun and Feng Bai. (2020). Self-assembled supramolecular nanostructure photosensitizers for photocatalytic hydrogen evolution. APL Materials, 8(12): 120706. https://doi.org/10.1063/5.0029923 DOI: https://doi.org/10.1063/5.0029923
Zhuang, Xiaodong, Wuxue Zhao, Fan Zhang, Yu Cao, Feng Liu, Shuai Bi and Xinliang Feng. (2016). A two-dimensional conjugated polymer framework with fully Sp2-bonded carbon skeleton. Polymer Chemistry, 7(25): 4176-81. https://doi.org/10.1039/c6py00561f DOI: https://doi.org/10.1039/C6PY00561F