Oligomeric approach to 2D materials modeling

Contenido principal del artículo

Serguei Fomine
https://orcid.org/0000-0002-7068-7579
Wilmer Esteban Vallejo Narváez
https://orcid.org/0000-0002-3712-0618
César Gabriel Vera de la Garza
https://orcid.org/0000-0003-2367-3534
Luis Daniel Solís Rodríguez
https://orcid.org/0000-0002-3924-0509

Resumen

Oligomeric approach has been originally developed to study electronic properties of conjugated polymers. This approach allows to access electronic properties of 1D systems otherwise difficult to calculate. We successfully extended this method to study electronic properties of 2D materials. In this review we summarize our recent work in this area. It has been established that large graphene nanoflake possess multiconfigurational singlet or even high spin ground state. Doping of 2D systems has also been explored and it has been demonstrated that doping allows to tune their electronic properties, including ionization potentials, electron affinities, reorganization energies and the very nature of the ground state. The electronic properties of novel 2D allotropies of carbon, phosphorus, germanium and silicon have been studied as well as their complexes with Li. Heterostructures, of different 2D allotropies are readily formed. This is an alternative method for tuning of their electronic properties.

Detalles del artículo

Cómo citar
Fomine, S., Vallejo Narváez, W. E., Vera de la Garza, C. G., & Solís Rodríguez, L. D. (2021). Oligomeric approach to 2D materials modeling. Mundo Nano. Revista Interdisciplinaria En Nanociencias Y Nanotecnología, 15(29), 1e-19e. https://doi.org/10.22201/ceiich.24485691e.2022.29.69699
Sección
Artículos de revisión

Citas

Becke, A. D. (1993). Density‐functional thermochemistry. III. The role of exact exchange. The Journal of Chemical Physics, 98(7). https://doi.org/10.1063/1.464913

Chuvilin, A., Meyer, J. C., Algara-Siller, G., Kaiser, U. (2009). From graphene constrictions to single carbon chains. New Journal of Physics, 11(8): 083019. https://doi.org/10.1088/1367-2630/11/8/083019

De la Garza, C. G. V., García, G. L., Olmedo, E. M., Peña, E. R., Fomine, S. (2018). Electronic structure of isomeric graphene nanoflakes. Computational and Theoretical Chemistry, 1140: 125–133. https://doi.org/10.1016/j.comptc.2018.08.007

De la Garza, C. G.V., Olmedo, E. M., Fomine, S. (2019). Electronic structure of boron and nitrogen doped isomeric graphene nanoflakes. Computational and Theoretical Chemistry, 1151: 12-23. https://doi.org/10.1016/j.comptc.2019.01.022

De la Garza, C. G. V., Narváez, W. E. V., Rodríguez, L. D. S., Fomine, S. (2020). Electronic structure of hybrid pentaheptite carbon nanoflakes containing boron-nitrogen motifs. Journal of Molecular Modeling, 26(4): 72. https://doi.org/10.1007/s00894-020-4324-9

De la Garza, C. G. V., Narváez, W. E. V., Rodríguez, L. D. S., Fomine, S. (2021). Novel 2D allotropic forms and nanoflakes of silicon, phosphorus, and germanium: a computational study. Journal of Molecular Modeling, 27(5): 142. https://doi.org/10.1007/s00894-021-04775-4

De la Garza, C. G. V., Rodríguez, L. D. S., Fomine, S., Vallejo Narváez, W. E. (2021). In silico modeling: electronic properties of phosphorene monoflakes and biflakes substituted with Al, Si, and S heteroatoms. Journal of Molecular Modeling, 27(6): 171. https://doi.org/10.1007/s00894-021-04789-y

Enyashin, A. N., Ivanovskii, A. L. (2011). Graphene allotropes. Physica Status Solidi (b), 248(8): 1879-1883. https://doi.org/10.1002/pssb.201046583

Grimme, S., Antony, J., Ehrlich, S., Krieg, H. (2010). A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. The Journal of Chemical Physics, 132(15): 154104. https://doi.org/10.1063/1.3382344

Hättig, C. (2003). Geometry optimizations with the coupled-cluster model CC2 using the resolution-of-the-identity approximation. The Journal of Chemical Physics, 118(17): 7751-7761. https://doi.org/10.1063/1.1564061

Hegarty, D., Robb, M. A. (1979). Application of unitary group methods to configuration interaction calculations. Molecular Physics, 38(6). https://doi.org/10.1080/00268977900102871

Joensen, P., Frindt, R. F., Morrison, S. R. (1986). Single-layer MoS2. Materials Research Bulletin, 21(4): 457-461. https://doi.org/10.1016/0025-5408(86)90011-5

Liu, H., Neal, A. T., Zhu, Z., Luo, Z., Xu, X., Tománek, D., Ye, P. D. (2014). Phosphorene: An unexplored 2D semiconductor with a high hole mobility. ACS Nano, 8(4): 4033-4041. https://doi.org/10.1021/nn501226z

Narváez, W. E. V., Rodríguez, L. D. S., De la Garza, C. G. V., Fomina, L., Fomine, S. (2020). The electronic structure of Van der Waals heterostructures formed by the nanoflakes of black phosphorene with those of graphene and haeckelites: their complexes with Li. Journal of Molecular Modeling, 26(8): 204. https://doi.org/10.1007/s00894-020-04463-9

Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D., Zhang, Y., Dubonos, S. V., Grigorieva, I. V., Firsov, A. A. (2004). Electric field effect in atomically thin carbon films. Science, 306(5696): 666-669. https://doi.org/10.1126/science.1102896

Olmeda, E. M., Vera, C. G., Fomine, S. (2018). Electronic structure of phosphorene nanoflakes. A theoretical insight. Computational and Theoretical Chemistry, 1130: 33-45. https://doi.org/10.1016/j.comptc.2018.03.007

Olmedo, E. M., De la Garza, C. G. V., Fomine, S. (2019). Modeling of silicon- and aluminum-doped phosphorene nanoflakes. Journal of Molecular Modeling, 25(9): 292. https://doi.org/10.1007/s00894-019-4182-5

Ovchinnikov, A. A. (1978). Multiplicity of the ground state of large alternant organic molecules with conjugated bonds. Theoretica Chimica Acta, 47(4): 297-304. https://doi.org/10.1007/BF00549259

Pablo-Pedro, R., López-Ríos, H., Fomine, S., Dresselhaus, M. S. (2017). Detection of multiconfigurational states of hydrogen-passivated silicene nanoclusters. The Journal of Physical Chemistry Letters, 8(3): 615-620. https://doi.org/10.1021/acs.jpclett.6b02773

Pablo-Pedro, R., López-Ríos, H., Mendoza-Cortés, J.-L., Kong, J., Fomine, S., Van Voorhis, T., Dresselhaus, M. S. (2018). Exploring low internal reorganization energies for silicene nanoclusters. Physical Review Applied, 9(5): 054012. https://doi.org/10.1103/PhysRevApplied.9.054012

Torres, A. E., Flores, R., Fomina, L., Fomine, S. (2016). Electronic structure of boron-doped finite graphene sheets: unrestricted DFT and complete active space calculations. Molecular Simulation, 42(18): 1512–1518. https://doi.org/10.1080/08927022.2016.1214955

Torres, A. E., Flores, R., Fomine, S. (2016). A comparative study of one and two dimensional π-conjugated systems. Synthetic Metals, 213: 78-87. https://doi.org/10.1016/j.synthmet.2016.01.005

Torres, A. E., Fomine, S. (2015). Electronic structure of graphene nanoribbons doped with nitrogen atoms: a theoretical insight. Physical Chemistry Chemical Physics, 17(16): 10608-10614. https://doi.org/10.1039/C5CP00227C

Torres, A. E., Guadarrama, P., Fomine, S. (2014). Multiconfigurational character of the ground states of polycyclic aromatic hydrocarbons. A systematic study. Journal of Molecular Modeling, 20(5): 2208. https://doi.org/10.1007/s00894-014-2208-6

Zade, S. S., Zamoshchik, N., Bendikov, M. (2011). From short conjugated oligomers to conjugated polymers. Lessons from studies on long conjugated oligomers. Accounts of Chemical Research, 44(1): 14-24. https://doi.org/10.1021/ar1000555

Zhang, Y., Xu, X., Goddard, W. A. (2009). Doubly hybrid density functional for accurate descriptions of nonbond interactions, thermochemistry, and thermochemical kinetics. Proceedings of the National Academy of Sciences, 106(13). https://doi.org/10.1073/pnas.0901093106