Nanofotónica. Los grandes avances y retos de un mundo pequeño
Contenido principal del artículo
Resumen
Se presenta una panorámica general del desarrollo de la nanofotónica a nivel global. Se exponen los desarrollos pioneros y los problemas que los mismos enfrentaron. También se comentan de manera general las tendencias actuales y se describe cuáles son los principales motivos que impiden un desarrollo terminado y cuáles son las estrategias para superarlos. Finalmente, se muestra de manera descriptiva la situación actual de esta área en México.
Descargas
Detalles del artículo
Mundo Nano. Revista Interdisciplinaria en Nanociencias y Nanotecnología, editada por la Universidad Nacional Autónoma de México, se distribuye bajo una Licencia Creative Commons Atribución-NoComercial 4.0 Internacional.
Basada en una obra en http://www.mundonano.unam.mx.
Citas
Ambati., M., Nam, S., Ulin, E., Genov, D., Bartal, G., Zhang, X. (2008). Observation of stimulated emission of surface plasmon polaritons. Nano Lett., 8: 3998-4001. http://dx.doi.org/10.1021/nl802603r DOI: https://doi.org/10.1021/nl802603r
Ash, E. y Nicholls, G. (1972). Super-resolution aperture scanning microscope. Nature, 237(5357): 510-512. http://dx.doi.org/10.1038/237510a0 DOI: https://doi.org/10.1038/237510a0
Bolger, P., Dickson, W., Krasavin, A., Liebscher, L., Hickey, S., Skryabin, D., y Zayats, A. (2010). Amplified spontaneous emission of surface plasmon polaritons and limitations on the increase of their propagation length. Opt. Lett., 35: 1197-1199. http://dx.doi.org/10.1364/OL.35.001197 DOI: https://doi.org/10.1364/OL.35.001197
Boltasseva, A., Atwater, H. (2011). Low-loss plasmonic metamaterials. Science, 331(6015): 290-291. http://dx.doi.org/10.1126/science.1198258 DOI: https://doi.org/10.1126/science.1198258
Bozhevolnyi S. I. y Coello V. (1998). Elastic scattering of surface plasmon polaritons: Modeling and experiment. Phys. Rev. B, 58(16): 10899-10910. http://dx.doi.org/10.1103/PhysRevB.58.10899 DOI: https://doi.org/10.1103/PhysRevB.58.10899
Carminati, R. y Greffet. (1995). Two-dimensional numerical simulation of the photon scanning tunneling microscope. Concept of transfer function. J. Opt. Commun., 116(4): 316-321. http://dx.doi.org/10.1016/0030-4018(95)91252-W DOI: https://doi.org/10.1016/0030-4018(95)91252-W
Coello, V., Bozhevolnyi, S. y Pudonin, F. (1997). Imaging of surface plasmon polaritons with a near-field microscope. Proc. SPIE, 3098: 536-543. DOI: https://doi.org/10.1117/12.281200
Coello, V., Cortes, R., Garcia, C. y Elizondo, N. (2013). Surface plasmon excitation and manipulation in disordered two-dimensional nanoparticle arrays. NANO: Brief reports and reviews, 8(4): 1350044-1350055. DOI: https://doi.org/10.1142/S1793292013500446
Coello, V. (2008). Surface plasmon polariton localization. Surface Review Letters, 15(6), 867-879. http://dx.doi.org/10.1142/S0218625X08011974 DOI: https://doi.org/10.1142/S0218625X08011974
Coello, V. T. Søndergaard, S. I. Bozhevolnyi. (2004). Modeling of a surface plasmon polariton interferometer. Opts. Comm., 240: 345-350. http://dx.doi.org/10.1016/j.optcom.2004.06.042 DOI: https://doi.org/10.1016/j.optcom.2004.06.042
Cortes, R., y Coello, V. (2009). Modeling of plasmonic phenomena in nanostructured surfaces. NANO: Brief Reports and Reviews, 4(4): 201-216. DOI: https://doi.org/10.1142/S1793292009001721
Chen, Y., Ding, F., Coello, V. y Bozhevolnyi, S. (2018). On-chip spectropolarimetry by fingerprinting with random surface arrays of nanoparticles. ACS Photonics, 5 (5): 1703-1710. http://dx.doi.org/10.1021/acsphotonics.7b01059 DOI: https://doi.org/10.1021/acsphotonics.7b01059
Ditlbacher. H., Krenn, J., Leitner, A., Aussenegg, F. (2002). Two-dimensional optics with surface plasmon polaritons. Applied Physics Letters, 81(10): 1762-1764. http://dx.doi.org/10.1063/1.1506018 DOI: https://doi.org/10.1063/1.1506018
Drezet, A., Hohenau, A., Koller, D., Stepanov, A., Ditlbacher, H., Steinberger, B., Aussenegg, F., Leitner, A., Krenn. J. (2008). Leakage radiation microscopy of surface plasmon polaritons. Materials Science and Engineering B, 149(1): 220-229. http://dx.doi.org/10.1016/j.mseb.2007.10.010 DOI: https://doi.org/10.1016/j.mseb.2007.10.010
Fang, Y. y Sun, M. (2015). Nanoplasmonic waveguides: towards applications in integrated nanophotonic circuits. Light: Science & Applications, 4: e294. http://dx.doi.org/10.1038/lsa.2015.67 DOI: https://doi.org/10.1038/lsa.2015.67
Focus issue, Nature Photonics. (2012). 6(11): 707-794. DOI: https://doi.org/10.1038/nphoton.2012.296
Fornel, F. (2001). Evanescent waves from newtonian optics to atomic optics. Alemania: Springer International Publishing.
Holmgaard, T., Z. Chen, S. I. Bozhevolnyi, L. Markey, A. Dereux. (2009). Dielectric-loaded plasmonic waveguide-ring resonators. Optics Express, 17(4): 2969-2975. http://dx.doi.org/10.1364/OE.17.002968 DOI: https://doi.org/10.1364/OE.17.002968
Garcia, C., Coello, V., Han, Z. y Bozhevolnyi, S. (2013). Generation of diffraction-free plasmonic beams with one-dimensional Bessel profiles. Optics Letters, 38(6): 905-907. http://dx.doi.org/10.1364/OL.38.000905 DOI: https://doi.org/10.1364/OL.38.000905
Groves, T. (2014). Electron beam lithography. Nanolithography, Science Direct. http://dx.doi.org/10.1533/9780857098757.80 DOI: https://doi.org/10.1533/9780857098757.80
Kawata, S. (ed.) (2001). Near field optics and surface plasmon polaritons. Alemania: Springer-Verlag, Topics in Applied Physics. DOI: https://doi.org/10.1007/3-540-44552-8
Kumar, S., Huck, A. y Andersen, U. (2013). Coupling of single quantum emitters to plasmons propagating on mechanically etched wires. Opt. Lett., 38: (19) 3838-3841. http://dx.doi.org/10.1364/OL.38.003838 DOI: https://doi.org/10.1364/OL.38.003838
Liu, H., Lalanne, P., Yang, X. y Hugonin, J. (2008). Surface plasmon generation by subwavelength isolated objects. IEEE Journal of Selected Topics in Quantum Electronics, 14: 1522-1529. http://dx.doi.org/10.1109/JSTQE.2008.923291 DOI: https://doi.org/10.1109/JSTQE.2008.923291
Maradudin, A., Simosen, I., Leskova, T., Mendez, E. (2001). Localization of surface plasmon polaritons on a random surface. Physica B: Condensed Matter., 296(1): 85-97. http://dx.doi.org/10.1016/S0921-4526(00)00784-5 DOI: https://doi.org/10.1016/S0921-4526(00)00784-5
Merlo, J., Coello, V., Cortes, R., Aguilar, F., Flores, A. (2014). Influence of the probe-sample interaction angle on image formation in apertureless scanning near field optical microscope. Modern Physics Letters B., 28(26): 1450205-1450214. http://dx.doi.org/10.1142/S0217984914502054 DOI: https://doi.org/10.1142/S0217984914502054
Ohtsu, Motoichi, Yatsui, Takashi (eds.) (2017). Progress in nanophotonics 4. Suiza: Springer International Publishing. DOI: https://doi.org/10.1007/978-3-319-49013-7
Pelton, M. y Bryant, G. (2013). Introduction to metal-nanoparticle plasmonics. Wiley-Science Wise Co-Publication.
Pisano, E., Garcia, C., Armenta, F., Garcia, M., Coello, V. (2018). Efficient and directional excitation of surface plasmon polaritons by oblique incidence on metallic ridges. Plasmonics, 13(6): 1935-1940. http://dx.doi.org/10.1007/s11468-018-0708-4 DOI: https://doi.org/10.1007/s11468-018-0708-4
Radko, I., Evlyukhin, A. Boltasseva, A. y Bozhevolnyi, S. (2008a). Refracting surface plasmon polaritons with nanoparticle arrays. Opt. Express, 16(6): 3924-3930. http://dx.doi.org/10.1364/OE.16.003924 DOI: https://doi.org/10.1364/OE.16.003924
Radko, I., Bozhevolnyi, S., Brucoli, G., Martín-Moreno, L., García–Vidal, J., Boltasseva, A. (2008b). Efficiency of local surface plasmon polariton excitation on ridges. Physical Review B, 78:115115-115122. http://dx.doi.org/10.1103/PhysRevB.78.115115 DOI: https://doi.org/10.1103/PhysRevB.78.115115
Raether, H. (1988). Surface plasmons. On smooth and rough surfaces and on gratings. Springer Tracts in Modern Physics, 111. Alemania: Springer-Verlag. DOI: https://doi.org/10.1007/BFb0048317
Seidel, J., Grafström, S., Eng., L. (2005). Stimulated emission of surface plasmons at the interface between a silver film and an optically pumped dye solution. Phys. Rev. Lett., 94: 177401-177405. http://dx.doi.org/10.1103/PhysRevLett.94.177401 DOI: https://doi.org/10.1103/PhysRevLett.94.177401
Smolyaninov, I., Davis, C. y Zayats, A. (2005). Image formation in surface plasmon polariton mirrors: applications in high-resolution optical microscopy. New J. Phys., 7: 175-182. DOI: https://doi.org/10.1088/1367-2630/7/1/175
Stockman, M. et al. (2018). Roadmap on plasmonics. J. Opt., 20: 1-39. http://dx.doi.org/10.1088/2040-8986/aaa114 DOI: https://doi.org/10.1088/2040-8986/aaa114
Synge, E. H. (1928). A suggested method for extending the microscopic resolution into the ultramicroscopic region. Phil. Mag., 6(35): 356-362. http://dx.doi.org/10.1080/14786440808564615 DOI: https://doi.org/10.1080/14786440808564615
Yoon, J., Lee, G., Ho Song, S., Oh, Ch-H. Kim, P. (2003). Surface-plasmon photonic band gaps in dielectric gratings on a flat metal surface. Journal of Applied Physics, 94(1): 123-127. http://dx.doi.org/10.1063/1.1577396 DOI: https://doi.org/10.1063/1.1577396
Zayats, A., Smolyaninov, I. y Maradudin, A. (2005). Nano-optics of surface plasmon polaritons. Physics Reports, 408: 131-314. http://dx.doi.org/10.1016/j.physrep.2004.11.001 DOI: https://doi.org/10.1016/j.physrep.2004.11.001