Nanopartículas de plata: síntesis y funcionalización. Una breve revisión
Contenido principal del artículo
Resumen
El objetivo del artículo es realizar una breve descripción del papel de las Ag NP’s, la funcionalización en su superficie, así como la mención de su síntesis, técnicas de caracterización y tendencias a futuro en investigación. Las tendencias a futuro proponen la síntesis de estas nanopartículas mediante técnicas de química verde para disminuir su impacto sobre el medio ambiente, y su uso como biosensores de células cancerígenas para optimizar diagnósticos y tratamientos.
Descargas
Detalles del artículo
Mundo Nano. Revista Interdisciplinaria en Nanociencias y Nanotecnología, editada por la Universidad Nacional Autónoma de México, se distribuye bajo una Licencia Creative Commons Atribución-NoComercial 4.0 Internacional.
Basada en una obra en http://www.mundonano.unam.mx.
Citas
Alarcón, E., Bueno–Alejo, C., Noel, C., Stamplecoskie, K., Pacioni, N., Poblete, H. y Scaiano, J. (2012). Human serum albumin as protecting agent of silver nanoparticles: role of the protein conformation and amine groups in the nanoparticle stabilization. J Nanopart Res 15: 1374. https://doi.org/10.1007/s11051-012-1374-7
Argentiere, S., Cella, C., Cesaria, M., Milani, P. y Lenardi, C. (2016). Silver nanoparticles in complex biological media: assessment of colloidal stability and protein corona formation. J Nanopart Res, 18: 253. https://doi.org/10.1007/s11051-016-3560-5
Arrebola, D., Fernández, L. y Sánchez, D. (2003) Principales ensayos para determinar la citotoxicidad de una sustancia, algunas consideraciones y su utilidad. Revista toxicológica en línea, 40-53.
Asharani P. V., Low Kah Mun G., Hande M. P., Valiyaveettil, S. (2009). Cytotoxicity and genotoxicity of silver nanoparticles in human cells. ACS Nano 3: 279-290. https://doi.org/10.1021/nn800596w
Ban, K. y Paul, S. (2016). Protein corona over silver nanoparticles triggers conformational change of proteins and drop in bactericidal potential of nanoparticles: Polyethylene glycol capping as preventive strategy. Colloids and Surfaces B: Biointerfaces 146, 577-584. https://doi.org/10.1016/j.colsurfb.2016.06.050
Chen S., Goode A.E., Sweeney S., Theodorou I.G., Thorley A.J., Ruenraroengsak P., Chang Y., Gow A., Schwander S., Skepper J., Zhang J.J., Shaffer M.S., Chung K.F., Tetley T.D., Ryan M.P., Porter A.E. (2013). Sulfidation of silver nanowires inside human alveolar epithelial cells: a potential detoxification mechanism. Nanoscale 5, 9839–9847. https://doi.org/10.1039/c3nr03205a
Ciobanu, C., Iconaru, S., Coustumer, P., Constantin, L. y Predoi, D. (2012). Antibacterial activity of silver-doped hydroxyapatite nanoparticles against Gram-positive and Gram-negative bacteria. Nanoscale Research Letters, 7: 32. https://doi.org/10.1186/1556-276X-7-324
Das, B., Dash, S., Mandal, D., Ghosh, T., Chattopadhyay, S., Tripathy, S., Das, S., Dey, S., Das, D. y Roy, S. (2015). Green synthesized silver nanoparticles destroy multidrug resistant bacteria via reactive oxygen species mediated membrane damage. Arabian Journal of Chemistry. https://doi.org/10.1016/j.arabjc.2015.08.008
Dorobantu, L., Fallone, C., Noble, A., Veinot, J., Ma, G., Goss, G. y Burrel, R. (2015). Toxicity of silver nanoparticles against bacteria, yeast, and algae. J Nanopart Res, 17: 172. https://doi.org/10.1007/s11051-015-2984-7
Duran, N., Silveira, C., Duran M. y Martinez, D. (2015). Silver nanoparticle protein corona and toxicity: a mini‑review. J Nanobiotechnol, 13: 55. https://doi.org/10.1186/s12951-015-0114-4
El-Deeb N. M., El-Sherbiny I. M., El-Aassara M. R., Hafez E. E. (2015). Novel trend in colon cancer therapy using silver nanoparticles synthesized by honey bee. J Nanomed Nanotechnol, 6: 265. https://doi.org/10.4172/2157-7439.1000265
Ge, C., Tian, J., Zhao, Y., Chen, C., Zhou, R. y Chai, Z. (2015). Towards understanding of nanoparticle–protein corona. Arch Toxicol, 89: 519-539. https://doi.org/10.1007/s00204-015-1458-0
Goldburg, W. (1999). Dynamic light scattering. Am. J. Phys. 67: 1152. https://doi.org/10.1119/1.19101
Gurunathan, S., Han, J., Kwon, D. y Kim, J. (2014). Enhanced antibacterial and antibiofilm activities of silver nanoparticles against Gram-negative and Gram-positive bacteria. Nanoscale Research Letters, 9: 373. https://doi.org/10.1186/1556-276X-9-373
Huang, H. y Yang, X. (2004). Synthesis of polysaccharide-stabilized gold and silver nanoparticles: a green method. Carbohydrate Research, 339: 2627-2631. https://doi.org/10.1016/j.carres.2004.08.005
Jain, K. K. (2010). Advances in the field of nano-oncology. BMC Med, 8: 83. https://doi.org/10.1016/j.carres.2004.08.005
Kennedy, D., Orts–Gil, G., Lai, C., Müller, L., Haase, A., Luch, A. y Seeberg, P. (2014). Carbohydrate functionalization of silver nanoparticles modulates cytotoxicity and cellular uptake. Journal of Nanobiotechnology, 12: 59. https://doi.org/10.1186/s12951-014-0059-z<(a>
Kuzma, J. (2007). Moving forward responsibly: Oversight for the nanotechnologybiology interface. Journal of Nanoparticle Research, 9: 165-182. https://doi.org/10.1007/s11051-006-9151-0
Lara, H., Ayala-Nuñez, V, Ixtepan–Turrent, L. y Rodríguez–Padilla, C. (2009). Bactericidal effect of silver nanoparticles against multidrug-resistant bacteria. World J Microbiol Biotechnol, 26: 615-621. https://doi.org/10.1007/s11274-009-0211-3
Lord, A., Ramasse, Q., Kepaptsoglou, D., Evans, J., Davies, P., Ward, M. y Wilks, S. (2017). Modifying the interface edge to control the electrical transport properties of nanocontacts to nanowires. Nano Lett., 17 (2): 687-694. https://doi.org/10.1021/acs.nanolett.6b03699
Miclăuş, T., Bochenkov, V. E., Ogaki, R., Howard, K. A., Sutherland, D. S. (2014). Spatial mapping and quantification of soft and hard protein coronas at silver nanocubes. Nano Lett, 14(4): 2086-2093. https://doi.org/10.1021/nl500277c
Miclăuş, T., Beer, C., Chevallier, J., Scavenius, C., Bochenkov, V., Enghild, J. y Sutherland, D. (2016). Dynamic protein coronas revealed as a modulator of silver nanoparticle sulphidation in vitro. Nature Communications. 7: 11770. https://doi.org/10.1038/ncomms11770
Otten, M. (1991). High-Angle annular dark-field imaging on a tem/stem system. Journal of Microscopy Research & Technique. 17: 2, 221-230. https://doi.org/10.1002/jemt.1060170209
Rai, M., Kon, K., Ingle, A., Duran, N., Galdiero, S. y Galdiero, M. (2014). Broad-spectrum bioactivities of silver nanoparticles: the emerging trends and future prospects. Appl Microbiol Biotechnol, 98: 5. https://doi.org/10.1007/s00253-013-5473-x
Redetic, M. (2013). Functionalization of textile materials with silver nanoparticles. J Mater Sci, 48: 95-107.
Rogers, J., Parkinson, C., Choi, Y., Spechock J. y Hussain, S. (2008). A preliminary assessment of silver nanoparticle inhibition of monkeypox virus plaque formation. Nanoscale Res Lett, 3: 129-133. https://doi.org/10.1007/s11671-008-9128-2
Sreelakshmy, V. Deepa M. K. y Muridula P. (2016). Green synthesis of silver nanoparticles from Glycyrrhiza glabra root extract for the treatment of gastric ulcer. J Develop Drugs, 5: 152. https://doi.org/10.4172/2329-6631.1000152
Sujitha, V., Murugan, K., Paulpandi, M., Panneerselvam, C., Suresh, U., Roni, M., Nicoletti, M., Higuchi, A., Madhiyazhagan, P., Subramaniam, J., Dinesh, D., Vadivalagan, C., Chandramohan, B., A. Alarfaj, A. Munusamy, M., Barnard, D. y Benelli, G. (2015). Green-synthesized silver nanoparticles as a novel control tool against dengue virus (den-2) and its primary vector Aedes aegypti. Parasitol Res, 114: 3315-3325. https://doi.org/10.1007/s00436-015-4556-2
Tonder, A., Joubert, A., y Cromarty, D. (2015). Limitations of the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay when compared to three commonly used cell enumeration assays. BMC Research Notes, 8:47. https://doi.org/10.1186/s13104-015-1000-8
Valodkar, M., Bhadoria, A., Pohnerkar, J., Mohan, M. y Thakor, S. (2010). Morphology and antibacterial activity of carbohydrate-stabilized silver nanoparticles. Carbohydrate Research 345: 1767-1773. https://doi.org/10.1007/s00436-015-4556-2
Xing, Y., Xu, M., Gui, X., Cao, Y., Babel, B., Rudolph, M., Weber, S., Kappl, M. y Butt, H. (2018). The application of atomic force microscopy in mineral flotation. Advancesin Colloid and Interface Science. (En prensa, prueba corregida). https://doi-org.ezproxy.uacj.mx/10.1016/j.cis.2018.01.004