Nanotecnología verde: una revisión de nanopartículas aúricas
Contenido principal del artículo
Resumen
La química verde, basada en los principios de Paul Anastas y John Warner, promueve la síntesis sostenible de nanopartículas de oro (AuNPs) reduciendo el uso de sustancias tóxicas y minimizando los residuos peligrosos. Los métodos tradicionales, los cuales emplean agentes reductores como el borohidruro de sodio (NaBH4), generan subproductos nocivos, mientras los enfoques verdes utilizan agentes naturales como extractos de plantas y microrganismos actuando como reductores y estabilizadores, sin generar residuos tóxicos. Estos métodos no solo son más seguros, sino que también mejoran la biocompatibilidad de las AuNPs, haciéndolas mucho más adecuadas para aplicaciones biomédicas, en particular para la administración de fármacos, las terapias dirigidas y los diagnósticos moleculares. El uso de fuentes naturales y biocatalizadores, como enzimas o microrganismos, facilita la síntesis en condiciones suaves, lo cual permite un mayor control sobre la forma y el tamaño de las AuNPs. Estas nanopartículas pueden ser diseñadas para dirigirse específicamente a las células, mejorando la eficacia de los tratamientos contra el cáncer y reduciendo los efectos adversos. En este artículo, presentamos las principales características y ventajas de la síntesis verde de nanopartículas de oro como una alternativa prometedora con importantes aplicaciones en nanomedicina y otras áreas tecnológicas.
Descargas
Detalles del artículo
Mundo Nano. Revista Interdisciplinaria en Nanociencias y Nanotecnología, editada por la Universidad Nacional Autónoma de México, se distribuye bajo una Licencia Creative Commons Atribución-NoComercial 4.0 Internacional.
Basada en una obra en http://www.mundonano.unam.mx.
Citas
Ahmad, A., S. Senapati, M. I. Khan, R. Kumar and M. Sastry. (2003). Extracellular biosynthesis of monodisperse gold nanoparticles by a novel extremophilic actinomycete. Thermomonospora sp. Langmuir, 19(8): 3550-3553. https://doi.org/10.1021/la026772l. DOI: https://doi.org/10.1021/la026772l
Ahmed, S. and S. Ikram. (2016). Biosynthesis of gold nanoparticles: a green approach. Journal of Photochemistry and Photobiology B: Biology, 161: 141-153. https://doi.org/10.1016/j.jphotobiol.2016.04.034. DOI: https://doi.org/10.1016/j.jphotobiol.2016.04.034
Albrecht, M. A., C. W. Evans and C. L. Raston. (2006). Green chemistry and the health implications of nanoparticles. Green Chemistry, 8(5): 417-432. https://doi.org/10.1039/B517131H. DOI: https://doi.org/10.1039/b517131h
Altuwayjiri, G., R. Alotaibi, M. Albarqan and S. Goumri-Said. (2022). Exploring low toxic and green propellants based on sodium borohydride. Emergent Materials, 5(4): 1227-1239. https://doi.org/10.1007/s42247-022-00384-w. DOI: https://doi.org/10.1007/s42247-022-00384-w
Alghuthaymi, M. A., C. Rajkuberan, T. Santhiya, O. Krejcar, K. Kuča, R. Periakaruppan and S. Prabukumar. (20021). Green Synthesis of Gold Nanoparticles Using Polianthes tuberosa L. Floral Extract. Plants, 10(11): 2370. https://doi.org/10.3390/plants10112370. DOI: https://doi.org/10.3390/plants10112370
Ameen, F., K. S. Al-Maary, A. Almansob and S. AlNadhari. (2023). Antioxidant, antibacterial and anticancer efficacy of Alternaria chlamydospora-mediated gold nanoparticles. Applied Nanoscience, 13(3): 2233-2240. https://doi.org/10.1007/s13204-021-02047-4. DOI: https://doi.org/10.1007/s13204-021-02047-4
Amina, S. J. and B. Guo. (2020). A review on the synthesis and functionalization of gold nanoparticles as a drug delivery vehicle. International Journal of Nanomedicine, 9823-9857. https://doi.org/10.2147/IJN.S279094. DOI: https://doi.org/10.2147/IJN.S279094
Anadozie, S. O., O. B. Adewale, A. O. Fadaka, O. B. Afolabi and S. Roux. (2022). Synthesis of gold nanoparticles using extract of Carica papaya fruit: evaluation of its antioxidant properties and effect on colorectal and breast cancer cells. Biocatalysis and Agricultural Biotechnology, 42: 102348. https://doi.org/10.1016/j.bcab.2022.102348. DOI: https://doi.org/10.1016/j.bcab.2022.102348
Anastas, P. T. and Warner, J. C. (1998). Principles of green chemistry. Green chemistry: Theory and Practice, 29: 14821-14842. DOI: https://doi.org/10.1093/oso/9780198506980.003.0004
Anastas, P. T. and J. C. Warner. (2000). Green chemistry: theory and practice. Oxford: Oxford University Press. https://doi.org/10.1093/oso/9780198506980.001.0001. DOI: https://doi.org/10.1093/oso/9780198506980.001.0001
Anastas, P. T. and M. M. Kirchhoff. (2002). Origins, current status, and future challenges of green chemistry. Accounts of Chemical Research, 35(9): 686-694. https://doi.org/10.1021/ar010065m. DOI: https://doi.org/10.1021/ar010065m
Anastas, N. D. and J. C. Warner. (2005). The incorporation of hazard reduction as a chemical design criterion in green chemistry. Chemical Health & Safety, 12(2): 9-13. https://doi.org/10.1016/j.chs.2004.10.001. DOI: https://doi.org/10.1016/j.chs.2004.10.001
Anastas, P. and N. Eghbali. (2010). Green chemistry: principles and practice. Chemical Society Reviews, 39(1): 301-312. https://doi.org/10.1039/B918763B. DOI: https://doi.org/10.1039/B918763B
Anbu, P., S. C. Gopinath and S. Jayanthi. (2020). Synthesis of gold nanoparticles using Platycodon grandiflorum extract and its antipathogenic activity under optimal conditions. Nanomaterials and Nanotechnology, 10: 1847980420961697. https://doi.org/10.1177/1847980420961697. DOI: https://doi.org/10.1177/1847980420961697
Arockiya Aarthi Rajathi, F., R. Arumugam, S. Saravanan and P. Anantharaman. (2014). Phytofabrication of gold nanoparticles assisted by leaves of Suaeda monoica and its free radical scavenging property. Journal of Photochemistry and Photobiology B: Biology, 135: 75-80. https://doi.org/10.1016/j.jphotobiol.2014.03.016. DOI: https://doi.org/10.1016/j.jphotobiol.2014.03.016
Asiya, S. I., K. Pal, S. Kralj, G. S. El-Sayyad, F. G. De Souza and T. Narayanan. (2020). Sustainable preparation of gold nanoparticles via green chemistry approach for biogenic applications. Materials Today Chemistry, 17: 100327. https://doi.org/10.1016/j.mtchem.2020.100327. DOI: https://doi.org/10.1016/j.mtchem.2020.100327
Balasubramanian, S., Kala, S. M. J. and Pushparaj, T. L. (2020). Biogenic synthesis of gold nanoparticles using Jasminum auriculatum leaf extract and their catalytic, antimicrobial and anticancer activities. Journal of Drug Delivery Science and Technology, 57: 101620. https://doi.org/10.1016/j.jddst.2020.101620. DOI: https://doi.org/10.1016/j.jddst.2020.101620
Bankar, A., B. Joshi, A. Ravi Kumar and S. Zinjarde. (2010). Banana peel extract mediated synthesis of gold nanoparticles. Colloids and Surfaces B: Biointerfaces, 80: 45-50. https://doi.org/10.1016/j.colsurfa.2010.07.024. DOI: https://doi.org/10.1016/j.colsurfb.2010.05.029
Bhandari, Y., Varma, S., Sawant, A., Beemagani, S., Jaiswal, N., Chaudhari, B. P. and Vamkudoth, K. R. (2023). Biosynthesis of gold nanoparticles by Penicillium rubens and catalytic detoxification of ochratoxin A and organic dye pollutants. International Microbiology, 26(4): 765-780. https://doi.org/10.1007/s10123-023-00341-5. DOI: https://doi.org/10.1007/s10123-023-00341-5
Bhatia, P. and S. S. Verma. (2023). Enhancement of LSPR properties of temperature-dependent gold nanoparticles. Materials Today: Proceedings, 78: 871-876. https://doi.org/10.1016/j.matpr.2022.12.020. DOI: https://doi.org/10.1016/j.matpr.2022.12.020
Bhattarai, B., Y. Zaker and T. P. Bigioni. (2018). Green synthesis of gold and silver nanoparticles: challenges and opportunities. Current Opinion in Green and Sustainable Chemistry, 12: 91-100. https://doi.org/10.1016/j.cogsc.2018.06.007. DOI: https://doi.org/10.1016/j.cogsc.2018.06.007
Bodelón, G., C. Costas, J. Pérez-Juste, I. Pastoriza-Santos and L. M. Liz-Marzán. (2017). Gold nanoparticles for regulation of cell function and behavior. Nano Today, 13: 40-60. https://doi.org/10.1016/j.nantod.2016.12.014. DOI: https://doi.org/10.1016/j.nantod.2016.12.014
Brito, F. R. (1999). The role of menaquinone in the nitrate reductase complex. Doctoral dissertation, The University of Texas Graduate School of Biomedical Sciences at Houston, 1999.
Brust, Mathias, Merryl Walker, David Bethell, David J. Schiffrin and Robin Whyman. (1994). Synthesis of thiol-derivatised gold nanoparticles in a two-phase liquid–liquid system. Journal of the Chemical Society, Chemical Communications, 7: 801-802. https://doi.org/10.1039/C39940000801. DOI: https://doi.org/10.1039/C39940000801
Cely-Bautista, M. M., G. C. Castellar-Ortega, J. E. Jaramillo-Colpas and O. F. Higuera-Cobos. (2023). Global trends in normativity and regulatory issues on nanotechnology. Revista Facultad de Ingeniería, 32(65). https://revistas.uptc.edu.co/index.php/ingenieria/article/view/16403.
Chandran, K., S. Song and S. I. Yun. (2019). Effect of size and shape controlled biogenic synthesis of gold nanoparticles and their mode of interactions against food borne bacterial pathogens. Arabian Journal of Chemistry, 12(8): 1994-2006. https://doi.org/10.1016/j.arabjc.2014.11.041. DOI: https://doi.org/10.1016/j.arabjc.2014.11.041
Chowdhury, N. K., R. Choudhury, B. Gogoi, C. M. Chang and R. P. Pandey. (2022). Microbial synthesis of gold nanoparticles and their application. Current Drug Targets, 23(7): 752-760. https://doi.org/10.2174/1389450123666220128152408. DOI: https://doi.org/10.2174/1389450123666220128152408
Clarance, P., B. Luvankar, J. Sales, A. Khusro, P. Agastian, J. C. Tack and H. J. Kim. (2020). Green synthesis and characterization of gold nanoparticles using endophytic fungi Fusarium solani and its in vitro anticancer and biomedical applications. Saudi Journal of Biological Sciences, 27(2): 706-712. https://doi.org/10.1016/j.sjbs.2019.12.026. DOI: https://doi.org/10.1016/j.sjbs.2019.12.026
Clemente, I., S. Ristori, F. Pierucci, M. Muniz‐Miranda, M. C. Salvatici, C. Giordano and C. Gonnelli. (2017). Gold nanoparticles from vegetable extracts using different plants from the market: a study on stability, shape and toxicity. ChemistrySelect, 2(30): 9777-9782. https://doi.org/10.1002/slct.201701681. DOI: https://doi.org/10.1002/slct.201701681
Daraee, H., A. Eatemadi, E. Abbasi, S. F. Aval, M. Kouhi and A. Akbarzadeh. (2016). Application of gold nanoparticles in biomedical and drug delivery. Artificial Cells, Nanomedicine, and Biotechnology, 44(1): 410-422. https://doi.org/10.3109/21691401.2014.955107. DOI: https://doi.org/10.3109/21691401.2014.955107
Das, S. K. and E. Marsili. (2010). A green chemical approach for the synthesis of gold nanoparticles: characterization and mechanistic aspect. Reviews in Environmental Science and Bio/Technology, 9: 199-204. https://doi.org/10.1007/s11157-010-9188-5. DOI: https://doi.org/10.1007/s11157-010-9188-5
Doan, V. D., Thieu, A. T., Nguyen, T. D., Nguyen, V. C., Cao, X. T., Nguyen, T. L. H. and Le, V. T. (2020). Biosynthesis of gold nanoparticles using Litsea cubeba fruit extract for catalytic reduction of 4‐nitrophenol. Journal of Nanomaterials, 1: 4548790. https://doi.org/10.1155/2020/4548790. DOI: https://doi.org/10.1155/2020/4548790
Do Dat, T., C. Q. Cong, T. L. H. Nhi, P. T. Khang, N. T. H. Nam, N. T. Tinh and N. H. Hieu. (2023). Green synthesis of gold nanoparticles using Andrographis paniculata leave extract for lead ion detection, degradation of dyes, and bioactivities. Biochemical Engineering Journal, 200: 109103. https://doi.org/10.1016/j.bej.2023.109103. DOI: https://doi.org/10.1016/j.bej.2023.109103
Dong, J., P. L. Carpinone, G. Pyrgiotakis, P. Demokritou and B. M. Moudgil. (2020). Synthesis of precision gold nanoparticles using Turkevich method. KONA Powder and Particle Journal, 37: 224-232. https://doi.org/10.14356/kona.2020011. DOI: https://doi.org/10.14356/kona.2020011
Dreaden, E. C., L. A. Austin, M. A. Mackey and M. A. El-Sayed. (2012). Size matters: gold nanoparticles in targeted cancer drug delivery. Therapeutic Delivery, 3(4): 457-478. https://doi.org/10.4155/tde.12.21. DOI: https://doi.org/10.4155/tde.12.21
Dvorakova, M., L. Kuracka, I. Zitnanova, S. Scsukova, J. Kollar, K. Konarikova and L. Laubertova. (2022). Assessment of the potential health risk of gold nanoparticles used in nanomedicine. Oxidative Medicine and Cellular Longevity, 1: 4685642. https://doi.org/10.1155/2022/4685642. DOI: https://doi.org/10.1155/2022/4685642
El-Shanshoury, A. E. R., E. Z. E. Ebeid, S. E. Elsilk, S. F. Mohamed and M. E. Ebeid. (2020). Biogenic synthesis of gold nanoparticles by bacteria and utilization of the chemical fabricated for diagnostic performance of viral hepatitis C virus-NS4. Letters in Applied Nanobioscience, 9: 1395-1408. https://doi.org/10.33263/LIANBS93.13951408. DOI: https://doi.org/10.33263/LIANBS93.13951408
Elia, P., R. Zach, S. Hazan, S. Kolusheva, Z. E. Porat and Y. Zeiri. (2014). Green synthesis of gold nanoparticles using plant extracts as reducing agents. International Journal of Nanomedicine, 4007-4021. https://doi.org/10.2147/IJN.S57343. DOI: https://doi.org/10.2147/IJN.S57343
Fan, J., Y. Cheng and M. Sun. (2020). Functionalized gold nanoparticles: synthesis, properties and biomedical applications. The Chemical Record, 20(12): 1474-1504. https://doi.org/10.1002/tcr.202000087. DOI: https://doi.org/10.1002/tcr.202000087
Fan, J. H., W. I. Hung, W. T. Li and J. M. Yeh. (2009). Biocompatibility study of gold nanoparticles to human cells. In 13th International Conference on Biomedical Engineering: ICBME 2008, 3-6 December, 2008, Singapore, 870-873. Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-540-92841-6_214. DOI: https://doi.org/10.1007/978-3-540-92841-6_214
Fadaka, A., O. Aluko, S. Awawu and K. Theledi. (2021). Green synthesis of gold nanoparticles using Pimenta dioica leaves aqueous extract and their application as photocatalyst, antioxidant, and antibacterial agents. Journal of Multidisciplinary Applied Natural Science, 1(2): 78-88. https://doi.org/10.47352/jmans.v1i2.81. DOI: https://doi.org/10.47352/jmans.v1i2.81
Folorunso, A., S. Akintelu, A. K. Oyebamiji, S. Ajayi, B. Abiola, I. Abdusalam and A. Morakinyo. (2019). Biosynthesis, characterization and antimicrobial activity of gold nanoparticles from leaf extracts of Annona muricata. Journal of Nanostructure in Chemistry, 9: 111-117. https://doi.org/10.1007/s40097-019-0301-1. DOI: https://doi.org/10.1007/s40097-019-0301-1
Ginzburg, A. L., L. Truong, R. L. Tanguay and J. E. Hutchison. (2018). Synergistic toxicity produced by mixtures of biocompatible gold nanoparticles and widely used surfactants. ACS Nano, 12(6): 5312-5322. https://doi.org/10.1021/acsnano.8b00036. DOI: https://doi.org/10.1021/acsnano.8b00036
Gutiérrez-Calleja, R. A., O. Rodríguez-Cortés, R. Flores-Mejía and A. Muñoz-Diosdado. (2021). Gold nanoparticles: uptake in human mast cells and effect on cell viability, inflammatory mediators, and proliferation. Molecular & Cellular Toxicology, 17: 439-452. https://doi.org/10.1007/s13273-021-00152-7. DOI: https://doi.org/10.1007/s13273-021-00152-7
Gurunathan, S., J. Han, J. H. Park and J. H. Kim. (2014). A green chemistry approach for synthesizing biocompatible gold nanoparticles. Nanoscale Research Letters, 9: 1-11. https://doi.org/10.1186/1556-276X-9-248. DOI: https://doi.org/10.1186/1556-276X-9-248
He, S., Z. Guo, Y. Zhang, S. Zhang, J. Wang and N. Gu. (2007). Biosynthesis of gold nanoparticles using the bacteria Rhodopseudomonas Capsulata. Materials Letters, 61(18): 3984-3987. https://doi.org/10.1016/j.matlet.2007.01.018. DOI: https://doi.org/10.1016/j.matlet.2007.01.018
He, S., Y. Zhang, Z. Guo and N. Gu. (2008). Biological synthesis of gold nanowires using extract of Rhodopseudomonas Capsulata. Biotechnology Progress, 24(2): 476-480. https://doi.org/10.1021/bp0703174. DOI: https://doi.org/10.1021/bp0703174
Hong, Y.A., Ha, J. W. (2022). Enhanced refractive index sensitivity of localized surface plasmonresonance inflection points in single hollow gold nanospheres with inner cavity. Sci Rep, 12: 6983. https://doi.org/10.1038/s41598-022-11197-6. DOI: https://doi.org/10.1038/s41598-022-11197-6
Hormozi-Nezhad, M. R., P. Karami and H. Robatjazi. (2013). A simple shape-controlled synthesis of gold nanoparticles using nonionic surfactants. RSC Advances, 3(21): 7726-7732. DOI: https://doi.org/10.1039/c3ra40280k
Huang, X. and M. A. El-Sayed. (2010). Gold nanoparticles: optical properties and implementations in cancer diagnosis and photothermal therapy. Journal of Advanced Research, 1(1): 13-28. https://doi.org/10.1016/j.jare.2010.02.002. DOI: https://doi.org/10.1016/j.jare.2010.02.002
Ikram, S. (2015). Synthesis of gold nanoparticles using plant extract: an overview. Nano Research, 1(1): 5.
Iravani, S. (2011). Green synthesis of metal nanoparticles using plants. Green Chemistry, 13(10): 2638-2650. DOI: https://doi.org/10.1039/c1gc15386b
Ji, Y., Y. Cao and Y. Song. (2019). Green synthesis of gold nanoparticles using a Cordyceps Militaris extract and their antiproliferative effect in liver cancer cells (HepG2). Artificial Cells, Nanomedicine, and Biotechnology, 47(1): 2737-2745. https://doi.org/10.1080/21691401.2019.1629952. DOI: https://doi.org/10.1080/21691401.2019.1629952
Kadhim, R. J., E. H. Karsh, Z. J. Taqi and M. S. Jabir. (2021). Biocompatibility of gold nanoparticles: in-vitro and in-vivo study. Materials Today: Proceedings, 42: 3041-3045. https://doi.org/10.1016/j.matpr.2020.12.826. DOI: https://doi.org/10.1016/j.matpr.2020.12.826
Khuda, F., Z. U. Haq, I. Ilahi, R. Ullah, A. Khan, H. Fouad, … and G. E. S. Batiha. (2021). Synthesis of gold nanoparticles using Sambucus Wightiana extract and investigation of its antimicrobial, anti-inflammatory, antioxidant and analgesic activities. Arabian Journal of Chemistry, 14(10): 103343. https://doi.org/10.1016/j.arabjc.2021.103343. DOI: https://doi.org/10.1016/j.arabjc.2021.103343
Kiio, T. M. and S. Park. (2021). Physical properties of nanoparticles do matter. Journal of Pharmaceutical Investigation, 51: 35-51. https://doi.org/10.1007/s40005-020-00504-w. DOI: https://doi.org/10.1007/s40005-020-00504-w
Kimling, J., M. Maier, B. Okenve, V. Kotaidis, H. Ballot and A. Plech. (2006). Turkevich method for gold nanoparticle synthesis revisited. The Journal of Physical Chemistry B, 110(32): 15700-15707. https://doi.org/10.1021/jp061667w. DOI: https://doi.org/10.1021/jp061667w
Khandel, P. and S. K. Shahi. (2016). Microbes mediated synthesis of metal nanoparticles: current status and future prospects. International Journal of Nanomaterials and Biostructures, 6(1): 1-24.
Krishnamoorthi, R., S. Bharathakumar, B. Malaikozhundan and P. U. Mahalingam. (2021). Mycofabrication of gold nanoparticles: optimization, characterization, stabilization and evaluation of its antimicrobial potential on selected human pathogens. Biocatalysis and Agricultural Biotechnology, 35: 102107. https://doi.org/10.1016/j.bcab.2021.102107. DOI: https://doi.org/10.1016/j.bcab.2021.102107
Krishnaraj, C., P. Muthukumaran, R. Ramachandran, M. D. Balakumaran and P. T. Kalaichelvan. (2014). Acalypha Indica Linn: biogenic synthesis of silver and gold nanoparticles and their cytotoxic effects against MDAMB-231, human breast cancer cells. Biotechnology Reports, 4: 42-49. https://doi.org/10.1016/j.btre.2014.08.002. DOI: https://doi.org/10.1016/j.btre.2014.08.002
Kumar, K. P., W. Paul and C. P. Sharma. (2011). Green synthesis of gold nanoparticles with Zingiber Officinale extract: characterization and blood compatibility. Process Biochemistry, 46: 2007-2013. https://doi.org/10.1016/j.procbio.2011.07.011. DOI: https://doi.org/10.1016/j.procbio.2011.07.011
Kus-Liśkiewicz, M., P. Fickers and I. Ben Tahar. (2021). Biocompatibility and cytotoxicity of gold nanoparticles: recent advances in methodologies and regulations. International Journal of Molecular Sciences, 22(20): 10952. https://doi.org/10.3390/ijms222010952. DOI: https://doi.org/10.3390/ijms222010952
Lavanya, G., K. Anandaraj, K. Selvam, M. Gopu, T. Selvankumar, M. Govarthanan and P. Kumar. (2024). Green synthesis of gold nanoparticles using macroalgae Halimeda Macroloba extract and their photocatalytic degradation of methylene blue and methyl orange. Polymers for Advanced Technologies, 35(4): e6383. https://doi.org/10.1002/pat.6383. DOI: https://doi.org/10.1002/pat.6383
Li, S., F. A. Al-Misned, H. A. El-Serehy and L. Yang. (2021). Green synthesis of gold nanoparticles using aqueous extract of Mentha Longifolia leaf and investigation of its anti-human breast carcinoma properties in the in vitro condition. Arabian Journal of Chemistry, 14(2): 102931. https://doi.org/10.1016/j.arabjc.2020.102931. DOI: https://doi.org/10.1016/j.arabjc.2020.102931
Li, N., P. Zhao and D. Astruc. (2014). Anisotropic gold nanoparticles: synthesis, properties, applications, and toxicity. Angewandte Chemie International Edition, 53(7): 1756-1789. https://doi.org/10.1002/anie.201300441. DOI: https://doi.org/10.1002/anie.201300441
López-Orenes, A., M. C. Bueso, H. M. Conesa, A. A. Calderón and M. A. Ferrer. (2017). Seasonal changes in antioxidative/oxidative profile of mining and non-mining populations of syrian beancaper as determined by soil conditions. Science of The Total Environment, 575: 437-447. https://doi.org/10.1016/j.scitotenv.2016.10.030. DOI: https://doi.org/10.1016/j.scitotenv.2016.10.030
Manchikanti, P. and T. K. Bandopadhyay. (2010). Nanomaterials and effects on biological systems: development of effective regulatory norms. NanoEthics, 4: 77-83. https://doi.org/10.1007/s11569-010-0084-9. DOI: https://doi.org/10.1007/s11569-010-0084-9
Merza, K. S., H. D. Al-Attabi, Z. M. Abbas and H. A. Yusr. (2012). Comparative study on methods for preparation of gold nanoparticles. Green and Sustainable Chemistry, 2(1): 26-28. http://dx.doi.org/10.4236/gsc.2012.21005. DOI: https://doi.org/10.4236/gsc.2012.21005
Meléndez-Villanueva, M. A., K. Morán-Santibañez, J. J. Martínez-Sanmiguel, R. Rangel-López, M. A. Garza-Navarro, C. Rodríguez-Padilla and L. M. Trejo-Ávila. (2019). Virucidal activity of gold nanoparticles synthesized by green chemistry using garlic extract. Viruses, 11(12): 1111. https://doi.org/10.3390/v11121111. DOI: https://doi.org/10.3390/v11121111
Menon, S., S. Rajeshkumar and V. Kumar. (2017). A review on biogenic synthesis of gold nanoparticles, characterization, and its applications. Resource-Efficient Technologies, 3(4): 516-527. https://doi.org/10.1016/j.reffit.2017.08.002. DOI: https://doi.org/10.1016/j.reffit.2017.08.002
Mishra, R. C., R. Kalra, R. Dilawari, M. Goel and C. J. Barrow. (2022). Bio-synthesis of Aspergillus terreus-mediated gold nanoparticle: antimicrobial, antioxidant, antifungal and in vitro cytotoxicity studies. Materials, 15(11): 3877. https://doi.org/10.3390/ma15113877. DOI: https://doi.org/10.3390/ma15113877
Mishra, A. and A. Malik. (2013). Recent advances in microbial metal bioaccumulation. Critical Reviews in Environmental Science and Technology, 43(11): 1162-1222. https://doi.org/10.1080/10934529.2011.627044. DOI: https://doi.org/10.1080/10934529.2011.627044
Mohammed Fayaz, A., M. Girilal, R. Venkatesan and P. T. Kalaichelvan. (2011). Biosynthesis of anisotropic gold nanoparticles using Maduca longifolia extract and their potential in infrared absorption. Colloids and Surfaces B: Biointerfaces, 88: 287-291. https://doi.org/10.1016/j.colsurfb.2011.07.003. DOI: https://doi.org/10.1016/j.colsurfb.2011.07.003
Molnár, Z., V. Bódai, G. Szakacs, B. Erdélyi, Z. Fogarassy, G. Sáfrán, … and I. Lagzi. (2018). Green synthesis of gold nanoparticles by thermophilic filamentous fungi. Scientific Reports, 8(1): 3943. https://doi.org/10.1038/s41598-018-22112-3. DOI: https://doi.org/10.1038/s41598-018-22112-3
Mubarak, D. Ali, N. Thajuddin, K. Jeganathan and M. Gunasekaran. (2011). Plant extract mediated synthesis of silver and gold nanoparticles and its antibacterial activity against clinically isolated pathogens. Colloids and Surfaces B: Biointerfaces, 85: 360-365. https://doi.org/10.1016/j.colsurfb.2011.03.009. DOI: https://doi.org/10.1016/j.colsurfb.2011.03.009
Narayanan, K. B. and N. Sakthivel. (2010). Phytosynthesis of gold nanoparticles using leaf extract of Coleus amboinicus Lour. Materials Characterization, 61: 1232-1238. https://doi.org/10.1016/j.matchar.2010.08.003. DOI: https://doi.org/10.1016/j.matchar.2010.08.003
Nies, D. H. (1999). Microbial heavy-metal resistance. Applied Microbiology and Biotechnology, 51: 730-750. https://doi.org/10.1007/s002530051457. DOI: https://doi.org/10.1007/s002530051457
Ojea-Jiménez, I., F. M. Romero, N. G. Bastús and V. Puntes. (2010). Small gold nanoparticles synthesized with sodium citrate and heavy water: insights into the reaction mechanism. The Journal of Physical Chemistry C, 114(4): 1800-1804. https://doi.org/10.1021/jp9091305. DOI: https://doi.org/10.1021/jp9091305
Olvera-Aripez, J., S. Camacho-López, M. Flores-Castañeda, C. Belman-Rodríguez, A. R. Vilchis-Néstor and E. Castro-Longoria. (2024). Biosynthesis of Gold nanoparticles by fungi and its potential in SERS. Bioprocess and Biosystems Engineering, 47(9): 1585-1593. https://doi.org/10.1007/s00449-024-03053-w. DOI: https://doi.org/10.1007/s00449-024-03053-w
Oliveira, A. E. F., A. C. Pereira, M. A. Resende and L. F. Ferreira. (2023). Gold nanoparticles: a didactic step-by-step of the synthesis using the Turkevich method, mechanisms, and characterizations. Analytica, 4(2): 250-263. https://doi.org/10.3390/analytica4020020. DOI: https://doi.org/10.3390/analytica4020020
Ovais, M., A. Raza, S. Naz, N. U. Islam, A. T. Khalil, S. Ali, … and Z. K. Shinwari. (2017). Current state and prospects of the phytosynthesized colloidal gold nanoparticles and their applications in cancer theranostics. Applied Microbiology and Biotechnology, 101: 3551-3565. https://doi.org/10.1007/s00253-017-8250-4. DOI: https://doi.org/10.1007/s00253-017-8250-4
Pacioni, N. L., C. D. Borsarelli, V. Rey and A. V. Veglia. (2015). Synthetic routes for the preparation of silver nanoparticles: a mechanistic perspective. En Silver nanoparticle applications: in the fabrication and design of medical and biosensing devices, 13-46. Cham: Springer International Publishing. https://doi.org/10.1007/978-3-319-11262-6_2. DOI: https://doi.org/10.1007/978-3-319-11262-6_2
Paciotti, G. F., D. G. Kingston and L. Tamarkin. (2006). Colloidal gold nanoparticles: a novel nanoparticle platform for developing multifunctional tumor‐targeted drug delivery vectors. Drug Development Research, 67(1): 47-54. https://doi.org/10.1002/ddr.20066. DOI: https://doi.org/10.1002/ddr.20066
Panda, T. and K. Deepa. (2011). Biosynthesis of gold nanoparticles. Journal of Nanoscience and Nanotechnology, 11(12): 10279-10294. https://doi.org/10.1166/jnn.2011.5021. DOI: https://doi.org/10.1166/jnn.2011.5021
Parveen, K., V. Banse and L. Ledwani. (2016). Green synthesis of nanoparticles: their advantages and disadvantages. AIP Conference Proceedings, vol. 1724, 1, 1-6. AIP Publishing. https://doi.org/10.1063/1.4945168. DOI: https://doi.org/10.1063/1.4945168
Patil, M. P., M. J. Kang, I. Niyonizigiye, A. Singh, J. O. Kim, Y. B. Seo and G. D. Kim. (2019). Extracellular synthesis of gold nanoparticles using the marine bacterium Paracoccus haeundaensis BC74171T and evaluation of their antioxidant activity and antiproliferative effect on normal and cancer cell lines. Colloids and Surfaces B: Biointerfaces, 183: 110455. https://doi.org/10.1016/j.colsurfb.2019.110455. DOI: https://doi.org/10.1016/j.colsurfb.2019.110455
Patil, N. A., S. Udgire, D. R. Shinde and P. D. Patil. (2023). Green synthesis of gold nanoparticles using extract of Vitis vinifera, Buchanania lanzan, Juglandaceae, Phoenix dactylifera plants, and evaluation of antimicrobial activity. Chemical Methodologies, 7: 15-27. https://doi.org/10.22034/CHEMM.2022.355289.1597.
Peng, H., S. Zhang, Q. Chai and Z. Hua. (2024). Green synthesis of gold nanoparticles using Acorus calamus leaf extract and study on their anti-alzheimer potential. Biotechnology and Bioprocess Engineering, 29(1): 157-163. https://doi.org/10.1007/s12257-024-00010-y. DOI: https://doi.org/10.1007/s12257-024-00010-y
Perotti, E. B. (2015). Impact of hydroquinone used as a redox effector model on potential denitrification, microbial activity and redox condition of a cultivable soil. Revista Argentina de Microbiología, 47(3): 212-218. https://doi.org/10.1016/j.ram.2015.06.003. DOI: https://doi.org/10.1016/j.ram.2015.06.003
Pissuwan, D., T. Niidome and M. B. Cortie. (2011). The forthcoming applications of gold nanoparticles in drug and gene delivery systems. Journal of Controlled Release, 149(1): 65-71. https://doi.org/10.1016/j.jconrel.2009.12.006. DOI: https://doi.org/10.1016/j.jconrel.2009.12.006
Prakash, K., K. R. Manu, S. R. Rout, W. H. Almalki, P. Kumar, A. Sahebkar and R. Dandela. 2024. History, introduction, and physiochemical properties of gold nanoparticles. Gold Nanoparticles for Drug Delivery, 3-30. Academic Press. https://doi.org/10.1016/B978-0-443-19061-2.00014-6. DOI: https://doi.org/10.1016/B978-0-443-19061-2.00014-6
Priecel, P., H. A. Salami, R. H. Padilla, Z. Zhong and J. A. López-Sánchez. (2016). Anisotropic gold nanoparticles: preparation and applications in catalysis. Chinese Journal of Catalysis, 37(10): 1619-1650. https://doi.org/10.1016/S1872-2067(16)62475-0. DOI: https://doi.org/10.1016/S1872-2067(16)62475-0
Qiu, R., W. Xiong, W. Hua, Y. He, X. Sun, M. Xing and L. Wang. (2021). A biosynthesized gold nanoparticle from Staphylococcus aureus as a functional factor in muscle tissue engineering. Applied Materials Today, 22: 100905. https://doi.org/10.1016/j.apmt.2020.100905. DOI: https://doi.org/10.1016/j.apmt.2020.100905
Quintero-García, M., E. Gutiérrez-Cortez, M. Bah, A. Rojas-Molina, M. D. L. A. Cornejo-Villegas, A. Del Real and I. Rojas-Molina. (2021). Comparative analysis of the chemical composition and physicochemical properties of the mucilage extracted from fresh and dehydrated Opuntia ficus indica cladodes. Foods, 10(9): 2137. https://doi.org/10.3390/foods10092137. DOI: https://doi.org/10.3390/foods10092137
Raghunandan, R. D., M. D. Bedre, S. Basavaraja, B. Sawle, S. Y. Manjunath et al. (2010). Rapid biosynthesis of irregular shaped gold nanoparticles from macerated aqueous extracellular dried clove buds (Syzygium aromaicum) solution. Colloids and Surfaces B: Biointerfaces, 79: 235-240. https://doi.org/10.1016/j.colsurfb.2010.04.003. DOI: https://doi.org/10.1016/j.colsurfb.2010.04.003
Rao, D. E. C. S., K. V. Rao, T. P. Reddy and V. D. Reddy. (2009). Molecular characterization, physicochemical properties, known and potential applications of phytases: an overview. Critical Reviews in Biotechnology, 29(2): 182-198. https://doi.org/10.1080/07388550902919571. DOI: https://doi.org/10.1080/07388550902919571
Rokkarukala, S., T. Cherian, C. Ragavendran, R. Mohanraju, C. Kamaraj, Y. Almoshari and S. Mohan. (2023). One-pot green synthesis of gold nanoparticles using Sarcophyton crassocaule, a marine soft coral: assessing biological potentialities of antibacterial, antioxidant, anti-diabetic and catalytic degradation of toxic organic pollutants. Heliyon, 9(3): e13846. 10.1016/j.heliyon.2023.e14668. DOI: https://doi.org/10.1016/j.heliyon.2023.e14668
Romo-Herrera, J. M., González, A. L., Guerrini, L., Castiello, F. R., Alonso-Núñez, G., Contreras, O. E., and Alvarez-Puebla, R. A. (2016). A study of the depth and size of concave cube Au nanoparticles as highly sensitive SERS probes. Nanoscale, 8(13): 7326-7333. 10.1039/C6NR01155A. DOI: https://doi.org/10.1039/C6NR01155A
Sadeghi, B., M. Mohammadzadeh and B. Babakhani. (2015). Green synthesis of gold nanoparticles using Stevia rebaudiana leaf extracts: characterization and their stability. Journal of Photochemistry and Photobiology B: Biology, 148: 101-106. https://doi.org/10.1016/j.jphotobiol.2015.03.025. DOI: https://doi.org/10.1016/j.jphotobiol.2015.03.025
Sánchez-Iglesias, A., Winckelmans, N., Altantzis, T., Bals, S., Grzelczak, M. and Liz-Marzán, L. M. (2016). High-yield seeded growth of monodisperse pentatwinned gold nanoparticles through thermally induced seed twinning. Journal of the American Chemical Society, 139(1): 107-110. https://doi.org/10.1021/jacs.6b12143. DOI: https://doi.org/10.1021/jacs.6b12143
Santos, D. K. F., R. D. Rufino, J. M. Luna, V. A. Santos and L. A. Sarubbo. (2016). Biosurfactants: multifunctional biomolecules of the 21st century. International Journal of Molecular Sciences, 17(3): 401. https://doi.org/10.3390/ijms17030401. DOI: https://doi.org/10.3390/ijms17030401
Sakai, T., H. Enomoto, K. Torigoe, H. Sakai and M. Abe. (2009). Surfactant-and reducer-free synthesis of gold nanoparticles in aqueous solutions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 347(1-3): 18-26. https://doi.org/10.1016/j.colsurfa.2008.10.037. DOI: https://doi.org/10.1016/j.colsurfa.2008.10.037
Savi, G. D., M. M. da Silva Paula, J. C. Possato, T. Barichello, D. Castagnaro and V. M. Scussel. (2012). Biological activity of gold nanoparticles towards filamentous pathogenic fungi. Journal of Nano Research, 20: 11-20. https://doi.org/10.4028/www.scientific.net/JNanoR.20.11. DOI: https://doi.org/10.4028/www.scientific.net/JNanoR.20.11
Scarabelli, L. and Liz-Marzán, L. M. (2021). An extended protocol for the synthesis of monodisperse gold nanotriangles. ACS Nano, 15(12): 18600-18607. https://doi.org/10.1021/acsnano.1c10538. DOI: https://doi.org/10.1021/acsnano.1c10538
Sehgal, N., K. Soni, N. Gupta and K. Kohli. (2018). Microorganism assisted synthesis of gold nanoparticles: a review. Asian Journal of Biomedical and Pharmaceutical Sciences, 8(64): 22-29.
Sheldon, R. A. (2012). Fundamentals of green chemistry: efficiency in reaction design. Chemical Society Reviews, 41(4): 1437-1451. DOI: https://doi.org/10.1039/C1CS15219J
Singh, Abhijeet, M. M. Sharma and Amla Batra. (2013). Synthesis of gold nanoparticles using chickpea leaf extract using green chemistry. Journal of Optoelectronics and Biomedical Materials, 5(2): 27-32.
Singh, P. K. and S. Kundu. (2014). Biosynthesis of gold nanoparticles using bacteria. Proceedings of the National Academy of Sciences, India Section B: Biological Sciences, 84: 331-336. https://doi.org/10.1007/s40011-013-0230-6. DOI: https://doi.org/10.1007/s40011-013-0230-6
Sharma, R. K., S. Gulati and S. Mehta. (2012). Preparation of gold nanoparticles using tea: a green chemistry experiment. Journal of Chemical Education, 89(10): 1316-1318. https://doi.org/10.1021/ed2002175. DOI: https://doi.org/10.1021/ed2002175
Shedbalkar, U., R. Singh, S. Wadhwani, S. Gaidhani and B. A. Chopade. (2014). Microbial synthesis of gold nanoparticles: current status and future prospects. Advances in Colloid and Interface Science, 209: 40-48. https://doi.org/10.1016/j.cis.2013.12.011. DOI: https://doi.org/10.1016/j.cis.2013.12.011
Shunmugam, R., S. R. Balusamy, V. Kumar, S. Menon, T. Lakshmi and H. Perumalsamy. (2021). Biosynthesis of gold nanoparticles using marine microbe (Vibrio alginolyticus) and its anticancer and antioxidant analysis. Journal of King Saud University-Science, 33(1): 101260. https://doi.org/10.1016/j.jksus.2020.101260. DOI: https://doi.org/10.1016/j.jksus.2020.101260
Smith, D. K. and B. A. Korgel. (2008). The importance of the CTAB surfactant on the colloidal seed-mediated synthesis of gold nanorods. Langmuir, 24(3): 644-649. https://doi.org/10.1021/la703625a. DOI: https://doi.org/10.1021/la703625a
Tabish, T. A., P. Dey, S. Mosca, M. Salimi, F. Palombo, P. Matousek and N. Stone. (2020). Smart gold nanostructures for light mediated cancer theranostics: combining optical diagnostics with photothermal therapy. Advanced Science, 7(15): 1903441. https://doi.org/10.1002/advs.201903441. DOI: https://doi.org/10.1002/advs.201903441
Thangamani, N. and N. J. C. P. L. Bhuvaneshwari. (2019). Green synthesis of gold nanoparticles using Simarouba glauca leaf extract and their biological activity on micro-organisms. Chemical Physics Letters, 732: 136587. https://doi.org/10.1016/j.cplett.2019.07.015. DOI: https://doi.org/10.1016/j.cplett.2019.07.015
Tiwari, P. M., K. Vig, V. A. Dennis and S. R. Singh. (2011). Functionalized gold nanoparticles and their biomedical applications. Nanomaterials, 1(1): 31-63. https://doi.org/10.3390/nano1010031. DOI: https://doi.org/10.3390/nano1010031
Tolic, M. T., I. P. Krbavcic, P. Vujevic, B. Milinovic, I. L. Jurcevic and N. Vahcic. (2017). Effects of weather conditions on phenolic content and antioxidant capacity in juice of chokeberries (Aronia melanocarpa L.). Polish Journal of Food and Nutrition Sciences, 67(1). https://doi.org/10.1515/pjfns-2016-0009. DOI: https://doi.org/10.1515/pjfns-2016-0009
Velmathi, G., V. Sekar, N. S. Kavitha, M. F. Albeshr and A. Santhanam. (2024). Biosynthesis of gold nanoparticles by the extremophile bacterium Deinococcus radiodurans and an evaluation of its application in drug delivery. Process Biochemistry, 145: 250-260. https://doi.org/10.1016/j.procbio.2024.07.003. DOI: https://doi.org/10.1016/j.procbio.2024.07.003
Vial, S., R. L. Reis and J. M. Oliveira. (2017). Recent advances using gold nanoparticles as a promising multimodal tool for tissue engineering and regenerative medicine. Current Opinion in Solid State and Materials Science, 21(2): 92-112. https://doi.org/10.1016/j.cossms.2016.03.006. DOI: https://doi.org/10.1016/j.cossms.2016.03.006
Vorobyova, V., M. Skiba, K. Vinnichuk and G. Vasyliev. (2024). Synthesis of gold nanoparticles using plum waste extract with green solvents. Sustainable Chemistry for the Environment, 6: 100086. https://doi.org/10.1016/j.scenv.2024.100086. DOI: https://doi.org/10.1016/j.scenv.2024.100086
Wuithschick, M., A. Birnbaum, S. Witte, M. Sztucki, U. Vainio, N. Pinna and J. Polte. (2015). Turkevich in new robes: key questions answered for the most common gold nanoparticle synthesis. ACS Nano, 9(7): 7052-7071. https://doi.org/10.1021/acsnano.5b01579. DOI: https://doi.org/10.1021/acsnano.5b01579
Xiao, J. and L. Qi. (2011). Surfactant-assisted, shape-controlled synthesis of gold nanocrystals. Nanoscale, 3(4): 1383-1396. DOI: https://doi.org/10.1039/c0nr00814a
Xu, F., Y. Li, X. Zhao, G. Liu, B. Pang, N. Liao et al. (2024). Diversity of fungus-mediated synthesis of gold nanoparticles: properties, mechanisms, challenges, and solving methods. Critical Reviews in Biotechnology, 44(5): 924-940. https://doi.org/10.1080/07388551.2023.2225131. DOI: https://doi.org/10.1080/07388551.2023.2225131
Yadid, M., R. Feiner and T. Dvir. (2019). Gold nanoparticle-integrated scaffolds for tissue engineering and regenerative medicine. Nano Letters, 19(4): 2198-2206. https://doi.org/10.1021/acs.nanolett.9b00472. DOI: https://doi.org/10.1021/acs.nanolett.9b00472
Yah, C. S. (2013). The toxicity of gold nanoparticles in relation to their physiochemical properties. Biomedical, Research, 24(3): 1-10.
Yang, S. P. (2013). Microscale synthesis and characterization of gold nanoparticles for the laboratory instruction. Chemistry Education Journal, 15: 1-11.
Zeng, C., W. Shang, X. Liang, X. Liang, Q. Chen, C. Chi et al. (2016). Cancer diagnosis and imaging-guided photothermal therapy using a dual-modality nanoparticle. ACS Applied Materials & Interfaces, 8(43): 29232-29241. https://doi.org/10.1021/acsami.6b06883. DOI: https://doi.org/10.1021/acsami.6b06883
Zhaleh, M., A. Zangeneh, S. Goorani, N. Seydi, M. M. Zangeneh, R. Tahvilian and E. Pirabbasi. (2019). In vitro and in vivo evaluation of cytotoxicity, antioxidant, antibacterial, antifungal, and cutaneous wound healing properties of gold nanoparticles produced via a green chemistry synthesis using Gundelia tournefortii L. as a capping and reducing agent. Applied Organometallic Chemistry, 33(9). e5015. https://doi.org/10.1002/aoc.5015. DOI: https://doi.org/10.1002/aoc.5015
Zhao, P., N. Li and D. Astruc. (2013). State of the art in gold nanoparticle synthesis. Coordination Chemistry, Reviews 257(3-4): 638-665. https://doi.org/10.1016/j.ccr.2012.09.002. DOI: https://doi.org/10.1016/j.ccr.2012.09.002
Zhao, X., N. Hou, C. Wan, L. Zhang and X. Liu. Gold Nanoparticles Synthesis Mediated by Fungus Isolated from Aerobic Granular Sludge: Process and Mechanisms. Heliyon, 10, 6 (2024). DOI: https://doi.org/10.1016/j.heliyon.2024.e28281
Zheng, J., Cheng, X., Zhang, H., Bai, X., Ai, R., Shao, L. and Wang, J. (2021). Gold nanorods: the most versatile plasmonic nanoparticles. Chemical Reviews, 121(21): 13342-13453. https://pubs.acs.org/doi/10.1021/acs.chemrev.1c00422. DOI: https://doi.org/10.1021/acs.chemrev.1c00422
Zhou, S., D. Huo, S. Goines, T. H. Yang, Z. Lyu, M. Zhao et al. (2018). Enabling complete ligand exchange on the surface of gold nanocrystals through the deposition and then etching of silver. Journal of the American Chemical Society, 140(38): 11898-11901. https://doi.org/10.1021/jacs.8b06464. DOI: https://doi.org/10.1021/jacs.8b06464
Zhou, J., J. Ralston, R. Sedev and D. A. Beattie. (2009). Functionalized gold nanoparticles: synthesis, structure and colloid stability. Journal of Colloid and Interface Science, 331(2): 251-262. https://doi.org/10.1016/j.jcis.2008.12.002. DOI: https://doi.org/10.1016/j.jcis.2008.12.002