Green nanotechnology: a review for aurum nanoparticles Nanotecnología verde: una revisión de nanopartículas aúricas
Contenido principal del artículo
Resumen
Green chemistry, based on the principles of Paul Anastas and John Warner, promotes the sustainable synthesis of gold nanoparticles (AuNPs) by reducing the use of toxic substances and minimizing hazardous waste. Traditional methods, which employ reducing agents such as sodium borohydride (NaBH4), generate harmful by-products, while green approaches use natural agents such as plant extracts and microorganisms that act as reductants and stabilizers, without generating toxic waste. These methods are not only safer, but also improve the biocompatibility of AuNPs, making them much more suitable for biomedical applications, notably drug delivery, targeted therapies and molecular diagnostics. The use of natural sources and biocatalysts, such as enzymes or microorganisms, facilitates synthesis under mild conditions, allowing greater control over the shape and size of AuNPs. These nanoparticles can be designed to specifically target cells, improving the efficacy of cancer treatments and reducing adverse effects. In this paper, we present the main features and advantages of green synthesis of AuNPs for a promising alternative with significant applications in nanomedicine and other technological areas.
Descargas
Detalles del artículo
Mundo Nano. Revista Interdisciplinaria en Nanociencias y Nanotecnología, editada por la Universidad Nacional Autónoma de México, se distribuye bajo una Licencia Creative Commons Atribución-NoComercial 4.0 Internacional.
Basada en una obra en http://www.mundonano.unam.mx.
Citas
Ahmad, A., S. Senapati, M. I. Khan, R. Kumar and M. Sastry. (2003). Extracellular biosynthesis of monodisperse gold nanoparticles by a novel extremophilic actinomycete. Thermomonospora sp. Langmuir, 19(8): 3550-3553. https://doi.org/10.1021/la026772l.
Ahmed, S. and S. Ikram. (2016). Biosynthesis of gold nanoparticles: a green approach. Journal of Photochemistry and Photobiology B: Biology, 161: 141-153. https://doi.org/10.1016/j.jphotobiol.2016.04.034.
Albrecht, M. A., C. W. Evans and C. L. Raston. (2006). Green chemistry and the health implications of nanoparticles. Green Chemistry, 8(5): 417-432. https://doi.org/10.1039/B517131H.
Altuwayjiri, G., R. Alotaibi, M. Albarqan and S. Goumri-Said. (2022). Exploring low toxic and green propellants based on sodium borohydride. Emergent Materials, 5(4): 1227-1239. https://doi.org/10.1007/s42247-022-00384-w.
Alghuthaymi, M. A., C. Rajkuberan, T. Santhiya, O. Krejcar, K. Kuča, R. Periakaruppan and S. Prabukumar. (20021). Green Synthesis of Gold Nanoparticles Using Polianthes tuberosa L. Floral Extract. Plants, 10(11): 2370. https://doi.org/10.3390/plants10112370.
Ameen, F., K. S. Al-Maary, A. Almansob and S. AlNadhari. (2023). Antioxidant, antibacterial and anticancer efficacy of Alternaria chlamydospora-mediated gold nanoparticles. Applied Nanoscience, 13(3): 2233-2240. https://doi.org/10.1007/s13204-021-02047-4.
Amina, S. J. and B. Guo. (2020). A review on the synthesis and functionalization of gold nanoparticles as a drug delivery vehicle. International Journal of Nanomedicine, 9823-9857. https://doi.org/10.2147/IJN.S279094.
Anadozie, S. O., O. B. Adewale, A. O. Fadaka, O. B. Afolabi and S. Roux. (2022). Synthesis of gold nanoparticles using extract of Carica papaya fruit: evaluation of its antioxidant properties and effect on colorectal and breast cancer cells. Biocatalysis and Agricultural Biotechnology, 42: 102348. https://doi.org/10.1016/j.bcab.2022.102348.
Anastas, P. T. and Warner, J. C. (1998). Principles of green chemistry. Green chemistry: Theory and Practice, 29: 14821-14842.
Anastas, P. T. and J. C. Warner. (2000). Green chemistry: theory and practice. Oxford: Oxford University Press. https://doi.org/10.1093/oso/9780198506980.001.0001.
Anastas, P. T. and M. M. Kirchhoff. (2002). Origins, current status, and future challenges of green chemistry. Accounts of Chemical Research, 35(9): 686-694. https://doi.org/10.1021/ar010065m.
Anastas, N. D. and J. C. Warner. (2005). The incorporation of hazard reduction as a chemical design criterion in green chemistry. Chemical Health & Safety, 12(2): 9-13. https://doi.org/10.1016/j.chs.2004.10.001.
Anastas, P. and N. Eghbali. (2010). Green chemistry: principles and practice. Chemical Society Reviews, 39(1): 301-312. https://doi.org/10.1039/B918763B.
Anbu, P., S. C. Gopinath and S. Jayanthi. (2020). Synthesis of gold nanoparticles using Platycodon grandiflorum extract and its antipathogenic activity under optimal conditions. Nanomaterials and Nanotechnology, 10: 1847980420961697. https://doi.org/10.1177/1847980420961697.
Arockiya Aarthi Rajathi, F., R. Arumugam, S. Saravanan and P. Anantharaman. (2014). Phytofabrication of gold nanoparticles assisted by leaves of Suaeda monoica and its free radical scavenging property. Journal of Photochemistry and Photobiology B: Biology, 135: 75-80. https://doi.org/10.1016/j.jphotobiol.2014.03.016.
Asiya, S. I., K. Pal, S. Kralj, G. S. El-Sayyad, F. G. De Souza and T. Narayanan. (2020). Sustainable preparation of gold nanoparticles via green chemistry approach for biogenic applications. Materials Today Chemistry, 17: 100327. https://doi.org/10.1016/j.mtchem.2020.100327.
Balasubramanian, S., Kala, S. M. J. and Pushparaj, T. L. (2020). Biogenic synthesis of gold nanoparticles using Jasminum auriculatum leaf extract and their catalytic, antimicrobial and anticancer activities. Journal of Drug Delivery Science and Technology, 57: 101620. https://doi.org/10.1016/j.jddst.2020.101620.
Bankar, A., B. Joshi, A. Ravi Kumar and S. Zinjarde. (2010). Banana peel extract mediated synthesis of gold nanoparticles. Colloids and Surfaces B: Biointerfaces, 80: 45-50. https://doi.org/10.1016/j.colsurfa.2010.07.024.
Bhandari, Y., Varma, S., Sawant, A., Beemagani, S., Jaiswal, N., Chaudhari, B. P. and Vamkudoth, K. R. (2023). Biosynthesis of gold nanoparticles by Penicillium rubens and catalytic detoxification of ochratoxin A and organic dye pollutants. International Microbiology, 26(4): 765-780. https://doi.org/10.1007/s10123-023-00341-5.
Bhatia, P. and S. S. Verma. (2023). Enhancement of LSPR properties of temperature-dependent gold nanoparticles. Materials Today: Proceedings, 78: 871-876. https://doi.org/10.1016/j.matpr.2022.12.020.
Bhattarai, B., Y. Zaker and T. P. Bigioni. (2018). Green synthesis of gold and silver nanoparticles: challenges and opportunities. Current Opinion in Green and Sustainable Chemistry, 12: 91-100. https://doi.org/10.1016/j.cogsc.2018.06.007.
Bodelón, G., C. Costas, J. Pérez-Juste, I. Pastoriza-Santos and L. M. Liz-Marzán. (2017). Gold nanoparticles for regulation of cell function and behavior. Nano Today, 13: 40-60. https://doi.org/10.1016/j.nantod.2016.12.014.
Brito, F. R. (1999). The role of menaquinone in the nitrate reductase complex. Doctoral dissertation, The University of Texas Graduate School of Biomedical Sciences at Houston, 1999.
Brust, Mathias, Merryl Walker, David Bethell, David J. Schiffrin and Robin Whyman. (1994). Synthesis of thiol-derivatised gold nanoparticles in a two-phase liquid–liquid system. Journal of the Chemical Society, Chemical Communications, 7: 801-802. https://doi.org/10.1039/C39940000801.
Cely-Bautista, M. M., G. C. Castellar-Ortega, J. E. Jaramillo-Colpas and O. F. Higuera-Cobos. (2023). Global trends in normativity and regulatory issues on nanotechnology. Revista Facultad de Ingeniería, 32(65). https://revistas.uptc.edu.co/index.php/ingenieria/article/view/16403.
Chandran, K., S. Song and S. I. Yun. (2019). Effect of size and shape controlled biogenic synthesis of gold nanoparticles and their mode of interactions against food borne bacterial pathogens. Arabian Journal of Chemistry, 12(8): 1994-2006. https://doi.org/10.1016/j.arabjc.2014.11.041.
Chowdhury, N. K., R. Choudhury, B. Gogoi, C. M. Chang and R. P. Pandey. (2022). Microbial synthesis of gold nanoparticles and their application. Current Drug Targets, 23(7): 752-760. https://doi.org/10.2174/1389450123666220128152408.
Clarance, P., B. Luvankar, J. Sales, A. Khusro, P. Agastian, J. C. Tack and H. J. Kim. (2020). Green synthesis and characterization of gold nanoparticles using endophytic fungi Fusarium solani and its in vitro anticancer and biomedical applications. Saudi Journal of Biological Sciences, 27(2): 706-712. https://doi.org/10.1016/j.sjbs.2019.12.026.
Clemente, I., S. Ristori, F. Pierucci, M. Muniz‐Miranda, M. C. Salvatici, C. Giordano and C. Gonnelli. (2017). Gold nanoparticles from vegetable extracts using different plants from the market: a study on stability, shape and toxicity. ChemistrySelect, 2(30): 9777-9782. https://doi.org/10.1002/slct.201701681.
Daraee, H., A. Eatemadi, E. Abbasi, S. F. Aval, M. Kouhi and A. Akbarzadeh. (2016). Application of gold nanoparticles in biomedical and drug delivery. Artificial Cells, Nanomedicine, and Biotechnology, 44(1): 410-422. https://doi.org/10.3109/21691401.2014.955107.
Das, S. K. and E. Marsili. (2010). A green chemical approach for the synthesis of gold nanoparticles: characterization and mechanistic aspect. Reviews in Environmental Science and Bio/Technology, 9: 199-204. https://doi.org/10.1007/s11157-010-9188-5.
Doan, V. D., Thieu, A. T., Nguyen, T. D., Nguyen, V. C., Cao, X. T., Nguyen, T. L. H. and Le, V. T. (2020). Biosynthesis of gold nanoparticles using Litsea cubeba fruit extract for catalytic reduction of 4‐nitrophenol. Journal of Nanomaterials, 1: 4548790. https://doi.org/10.1155/2020/4548790.
Do Dat, T., C. Q. Cong, T. L. H. Nhi, P. T. Khang, N. T. H. Nam, N. T. Tinh and N. H. Hieu. (2023). Green synthesis of gold nanoparticles using Andrographis paniculata leave extract for lead ion detection, degradation of dyes, and bioactivities. Biochemical Engineering Journal, 200: 109103. https://doi.org/10.1016/j.bej.2023.109103.
Dong, J., P. L. Carpinone, G. Pyrgiotakis, P. Demokritou and B. M. Moudgil. (2020). Synthesis of precision gold nanoparticles using Turkevich method. KONA Powder and Particle Journal, 37: 224-232. https://doi.org/10.14356/kona.2020011.
Dreaden, E. C., L. A. Austin, M. A. Mackey and M. A. El-Sayed. (2012). Size matters: gold nanoparticles in targeted cancer drug delivery. Therapeutic Delivery, 3(4): 457-478. https://doi.org/10.4155/tde.12.21.
Dvorakova, M., L. Kuracka, I. Zitnanova, S. Scsukova, J. Kollar, K. Konarikova and L. Laubertova. (2022). Assessment of the potential health risk of gold nanoparticles used in nanomedicine. Oxidative Medicine and Cellular Longevity, 1: 4685642. https://doi.org/10.1155/2022/4685642.
El-Shanshoury, A. E. R., E. Z. E. Ebeid, S. E. Elsilk, S. F. Mohamed and M. E. Ebeid. (2020). Biogenic synthesis of gold nanoparticles by bacteria and utilization of the chemical fabricated for diagnostic performance of viral hepatitis C virus-NS4. Letters in Applied Nanobioscience, 9: 1395-1408. https://doi.org/10.33263/LIANBS93.13951408.
Elia, P., R. Zach, S. Hazan, S. Kolusheva, Z. E. Porat and Y. Zeiri. (2014). Green synthesis of gold nanoparticles using plant extracts as reducing agents. International Journal of Nanomedicine, 4007-4021. https://doi.org/10.2147/IJN.S57343.
Fan, J., Y. Cheng and M. Sun. (2020). Functionalized gold nanoparticles: synthesis, properties and biomedical applications. The Chemical Record, 20(12): 1474-1504. https://doi.org/10.1002/tcr.202000087.
Fan, J. H., W. I. Hung, W. T. Li and J. M. Yeh. (2009). Biocompatibility study of gold nanoparticles to human cells. In 13th International Conference on Biomedical Engineering: ICBME 2008, 3-6 December, 2008, Singapore, 870-873. Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-540-92841-6_214.
Fadaka, A., O. Aluko, S. Awawu and K. Theledi. (2021). Green synthesis of gold nanoparticles using Pimenta dioica leaves aqueous extract and their application as photocatalyst, antioxidant, and antibacterial agents. Journal of Multidisciplinary Applied Natural Science, 1(2): 78-88. https://doi.org/10.47352/jmans.v1i2.81.
Folorunso, A., S. Akintelu, A. K. Oyebamiji, S. Ajayi, B. Abiola, I. Abdusalam and A. Morakinyo. (2019). Biosynthesis, characterization and antimicrobial activity of gold nanoparticles from leaf extracts of Annona muricata. Journal of Nanostructure in Chemistry, 9: 111-117. https://doi.org/10.1007/s40097-019-0301-1.
Ginzburg, A. L., L. Truong, R. L. Tanguay and J. E. Hutchison. (2018). Synergistic toxicity produced by mixtures of biocompatible gold nanoparticles and widely used surfactants. ACS Nano, 12(6): 5312-5322. https://doi.org/10.1021/acsnano.8b00036.
Gutiérrez-Calleja, R. A., O. Rodríguez-Cortés, R. Flores-Mejía and A. Muñoz-Diosdado. (2021). Gold nanoparticles: uptake in human mast cells and effect on cell viability, inflammatory mediators, and proliferation. Molecular & Cellular Toxicology, 17: 439-452. https://doi.org/10.1007/s13273-021-00152-7.
Gurunathan, S., J. Han, J. H. Park and J. H. Kim. (2014). A green chemistry approach for synthesizing biocompatible gold nanoparticles. Nanoscale Research Letters, 9: 1-11. https://doi.org/10.1186/1556-276X-9-248.
He, S., Z. Guo, Y. Zhang, S. Zhang, J. Wang and N. Gu. (2007). Biosynthesis of gold nanoparticles using the bacteria Rhodopseudomonas Capsulata. Materials Letters, 61(18): 3984-3987. https://doi.org/10.1016/j.matlet.2007.01.018.
He, S., Y. Zhang, Z. Guo and N. Gu. (2008). Biological synthesis of gold nanowires using extract of Rhodopseudomonas Capsulata. Biotechnology Progress, 24(2): 476-480. https://doi.org/10.1021/bp0703174.
Hong, Y.A., Ha, J. W. (2022). Enhanced refractive index sensitivity of localized surface plasmonresonance inflection points in single hollow gold nanospheres with inner cavity. Sci Rep, 12: 6983. https://doi.org/10.1038/s41598-022-11197-6.
Hormozi-Nezhad, M. R., P. Karami and H. Robatjazi. (2013). A simple shape-controlled synthesis of gold nanoparticles using nonionic surfactants. RSC Advances, 3(21): 7726-7732.
Huang, X. and M. A. El-Sayed. (2010). Gold nanoparticles: optical properties and implementations in cancer diagnosis and photothermal therapy. Journal of Advanced Research, 1(1): 13-28. https://doi.org/10.1016/j.jare.2010.02.002.
Ikram, S. (2015). Synthesis of gold nanoparticles using plant extract: an overview. Nano Research, 1(1): 5.
Iravani, S. (2011). Green synthesis of metal nanoparticles using plants. Green Chemistry, 13(10): 2638-2650.
Ji, Y., Y. Cao and Y. Song. (2019). Green synthesis of gold nanoparticles using a Cordyceps Militaris extract and their antiproliferative effect in liver cancer cells (HepG2). Artificial Cells, Nanomedicine, and Biotechnology, 47(1): 2737-2745. https://doi.org/10.1080/21691401.2019.1629952.
Kadhim, R. J., E. H. Karsh, Z. J. Taqi and M. S. Jabir. (2021). Biocompatibility of gold nanoparticles: in-vitro and in-vivo study. Materials Today: Proceedings, 42: 3041-3045. https://doi.org/10.1016/j.matpr.2020.12.826.
Khuda, F., Z. U. Haq, I. Ilahi, R. Ullah, A. Khan, H. Fouad, … and G. E. S. Batiha. (2021). Synthesis of gold nanoparticles using Sambucus Wightiana extract and investigation of its antimicrobial, anti-inflammatory, antioxidant and analgesic activities. Arabian Journal of Chemistry, 14(10): 103343. https://doi.org/10.1016/j.arabjc.2021.103343.
Kiio, T. M. and S. Park. (2021). Physical properties of nanoparticles do matter. Journal of Pharmaceutical Investigation, 51: 35-51. https://doi.org/10.1007/s40005-020-00504-w.
Kimling, J., M. Maier, B. Okenve, V. Kotaidis, H. Ballot and A. Plech. (2006). Turkevich method for gold nanoparticle synthesis revisited. The Journal of Physical Chemistry B, 110(32): 15700-15707. https://doi.org/10.1021/jp061667w.
Khandel, P. and S. K. Shahi. (2016). Microbes mediated synthesis of metal nanoparticles: current status and future prospects. International Journal of Nanomaterials and Biostructures, 6(1): 1-24.
Krishnamoorthi, R., S. Bharathakumar, B. Malaikozhundan and P. U. Mahalingam. (2021). Mycofabrication of gold nanoparticles: optimization, characterization, stabilization and evaluation of its antimicrobial potential on selected human pathogens. Biocatalysis and Agricultural Biotechnology, 35: 102107. https://doi.org/10.1016/j.bcab.2021.102107.
Krishnaraj, C., P. Muthukumaran, R. Ramachandran, M. D. Balakumaran and P. T. Kalaichelvan. (2014). Acalypha Indica Linn: biogenic synthesis of silver and gold nanoparticles and their cytotoxic effects against MDAMB-231, human breast cancer cells. Biotechnology Reports, 4: 42-49. https://doi.org/10.1016/j.btre.2014.08.002.
Kumar, K. P., W. Paul and C. P. Sharma. (2011). Green synthesis of gold nanoparticles with Zingiber Officinale extract: characterization and blood compatibility. Process Biochemistry, 46: 2007-2013. https://doi.org/10.1016/j.procbio.2011.07.011.
Kus-Liśkiewicz, M., P. Fickers and I. Ben Tahar. (2021). Biocompatibility and cytotoxicity of gold nanoparticles: recent advances in methodologies and regulations. International Journal of Molecular Sciences, 22(20): 10952. https://doi.org/10.3390/ijms222010952.
Lavanya, G., K. Anandaraj, K. Selvam, M. Gopu, T. Selvankumar, M. Govarthanan and P. Kumar. (2024). Green synthesis of gold nanoparticles using macroalgae Halimeda Macroloba extract and their photocatalytic degradation of methylene blue and methyl orange. Polymers for Advanced Technologies, 35(4): e6383. https://doi.org/10.1002/pat.6383.
Li, S., F. A. Al-Misned, H. A. El-Serehy and L. Yang. (2021). Green synthesis of gold nanoparticles using aqueous extract of Mentha Longifolia leaf and investigation of its anti-human breast carcinoma properties in the in vitro condition. Arabian Journal of Chemistry, 14(2): 102931. https://doi.org/10.1016/j.arabjc.2020.102931.
Li, N., P. Zhao and D. Astruc. (2014). Anisotropic gold nanoparticles: synthesis, properties, applications, and toxicity. Angewandte Chemie International Edition, 53(7): 1756-1789. https://doi.org/10.1002/anie.201300441.
López-Orenes, A., M. C. Bueso, H. M. Conesa, A. A. Calderón and M. A. Ferrer. (2017). Seasonal changes in antioxidative/oxidative profile of mining and non-mining populations of syrian beancaper as determined by soil conditions. Science of The Total Environment, 575: 437-447. https://doi.org/10.1016/j.scitotenv.2016.10.030.
Manchikanti, P. and T. K. Bandopadhyay. (2010). Nanomaterials and effects on biological systems: development of effective regulatory norms. NanoEthics, 4: 77-83. https://doi.org/10.1007/s11569-010-0084-9.
Merza, K. S., H. D. Al-Attabi, Z. M. Abbas and H. A. Yusr. (2012). Comparative study on methods for preparation of gold nanoparticles. Green and Sustainable Chemistry, 2(1): 26-28. http://dx.doi.org/10.4236/gsc.2012.21005.
Meléndez-Villanueva, M. A., K. Morán-Santibañez, J. J. Martínez-Sanmiguel, R. Rangel-López, M. A. Garza-Navarro, C. Rodríguez-Padilla and L. M. Trejo-Ávila. (2019). Virucidal activity of gold nanoparticles synthesized by green chemistry using garlic extract. Viruses, 11(12): 1111. https://doi.org/10.3390/v11121111.
Menon, S., S. Rajeshkumar and V. Kumar. (2017). A review on biogenic synthesis of gold nanoparticles, characterization, and its applications. Resource-Efficient Technologies, 3(4): 516-527. https://doi.org/10.1016/j.reffit.2017.08.002.
Mishra, R. C., R. Kalra, R. Dilawari, M. Goel and C. J. Barrow. (2022). Bio-synthesis of Aspergillus terreus-mediated gold nanoparticle: antimicrobial, antioxidant, antifungal and in vitro cytotoxicity studies. Materials, 15(11): 3877. https://doi.org/10.3390/ma15113877.
Mishra, A. and A. Malik. (2013). Recent advances in microbial metal bioaccumulation. Critical Reviews in Environmental Science and Technology, 43(11): 1162-1222. https://doi.org/10.1080/10934529.2011.627044.
Mohammed Fayaz, A., M. Girilal, R. Venkatesan and P. T. Kalaichelvan. (2011). Biosynthesis of anisotropic gold nanoparticles using Maduca longifolia extract and their potential in infrared absorption. Colloids and Surfaces B: Biointerfaces, 88: 287-291. https://doi.org/10.1016/j.colsurfb.2011.07.003.
Molnár, Z., V. Bódai, G. Szakacs, B. Erdélyi, Z. Fogarassy, G. Sáfrán, … and I. Lagzi. (2018). Green synthesis of gold nanoparticles by thermophilic filamentous fungi. Scientific Reports, 8(1): 3943. https://doi.org/10.1038/s41598-018-22112-3.
Mubarak, D. Ali, N. Thajuddin, K. Jeganathan and M. Gunasekaran. (2011). Plant extract mediated synthesis of silver and gold nanoparticles and its antibacterial activity against clinically isolated pathogens. Colloids and Surfaces B: Biointerfaces, 85: 360-365. https://doi.org/10.1016/j.colsurfb.2011.03.009.
Narayanan, K. B. and N. Sakthivel. (2010). Phytosynthesis of gold nanoparticles using leaf extract of Coleus amboinicus Lour. Materials Characterization, 61: 1232-1238. https://doi.org/10.1016/j.matchar.2010.08.003.
Nies, D. H. (1999). Microbial heavy-metal resistance. Applied Microbiology and Biotechnology, 51: 730-750. https://doi.org/10.1007/s002530051457.
Ojea-Jiménez, I., F. M. Romero, N. G. Bastús and V. Puntes. (2010). Small gold nanoparticles synthesized with sodium citrate and heavy water: insights into the reaction mechanism. The Journal of Physical Chemistry C, 114(4): 1800-1804. https://doi.org/10.1021/jp9091305.
Olvera-Aripez, J., S. Camacho-López, M. Flores-Castañeda, C. Belman-Rodríguez, A. R. Vilchis-Néstor and E. Castro-Longoria. (2024). Biosynthesis of Gold nanoparticles by fungi and its potential in SERS. Bioprocess and Biosystems Engineering, 47(9): 1585-1593. https://doi.org/10.1007/s00449-024-03053-w.
Oliveira, A. E. F., A. C. Pereira, M. A. Resende and L. F. Ferreira. (2023). Gold nanoparticles: a didactic step-by-step of the synthesis using the Turkevich method, mechanisms, and characterizations. Analytica, 4(2): 250-263. https://doi.org/10.3390/analytica4020020.
Ovais, M., A. Raza, S. Naz, N. U. Islam, A. T. Khalil, S. Ali, … and Z. K. Shinwari. (2017). Current state and prospects of the phytosynthesized colloidal gold nanoparticles and their applications in cancer theranostics. Applied Microbiology and Biotechnology, 101: 3551-3565. https://doi.org/10.1007/s00253-017-8250-4.
Pacioni, N. L., C. D. Borsarelli, V. Rey and A. V. Veglia. (2015). Synthetic routes for the preparation of silver nanoparticles: a mechanistic perspective. En Silver nanoparticle applications: in the fabrication and design of medical and biosensing devices, 13-46. Cham: Springer International Publishing. https://doi.org/10.1007/978-3-319-11262-6_2.
Paciotti, G. F., D. G. Kingston and L. Tamarkin. (2006). Colloidal gold nanoparticles: a novel nanoparticle platform for developing multifunctional tumor‐targeted drug delivery vectors. Drug Development Research, 67(1): 47-54. https://doi.org/10.1002/ddr.20066.
Panda, T. and K. Deepa. (2011). Biosynthesis of gold nanoparticles. Journal of Nanoscience and Nanotechnology, 11(12): 10279-10294. https://doi.org/10.1166/jnn.2011.5021.
Parveen, K., V. Banse and L. Ledwani. (2016). Green synthesis of nanoparticles: their advantages and disadvantages. AIP Conference Proceedings, vol. 1724, 1, 1-6. AIP Publishing. https://doi.org/10.1063/1.4945168.
Patil, M. P., M. J. Kang, I. Niyonizigiye, A. Singh, J. O. Kim, Y. B. Seo and G. D. Kim. (2019). Extracellular synthesis of gold nanoparticles using the marine bacterium Paracoccus haeundaensis BC74171T and evaluation of their antioxidant activity and antiproliferative effect on normal and cancer cell lines. Colloids and Surfaces B: Biointerfaces, 183: 110455. https://doi.org/10.1016/j.colsurfb.2019.110455.
Patil, N. A., S. Udgire, D. R. Shinde and P. D. Patil. (2023). Green synthesis of gold nanoparticles using extract of Vitis vinifera, Buchanania lanzan, Juglandaceae, Phoenix dactylifera plants, and evaluation of antimicrobial activity. Chemical Methodologies, 7: 15-27. https://doi.org/10.22034/CHEMM.2022.355289.1597.
Peng, H., S. Zhang, Q. Chai and Z. Hua. (2024). Green synthesis of gold nanoparticles using Acorus calamus leaf extract and study on their anti-alzheimer potential. Biotechnology and Bioprocess Engineering, 29(1): 157-163. https://doi.org/10.1007/s12257-024-00010-y.
Perotti, E. B. (2015). Impact of hydroquinone used as a redox effector model on potential denitrification, microbial activity and redox condition of a cultivable soil. Revista Argentina de Microbiología, 47(3): 212-218. https://doi.org/10.1016/j.ram.2015.06.003.
Pissuwan, D., T. Niidome and M. B. Cortie. (2011). The forthcoming applications of gold nanoparticles in drug and gene delivery systems. Journal of Controlled Release, 149(1): 65-71. https://doi.org/10.1016/j.jconrel.2009.12.006.
Prakash, K., K. R. Manu, S. R. Rout, W. H. Almalki, P. Kumar, A. Sahebkar and R. Dandela. 2024. History, introduction, and physiochemical properties of gold nanoparticles. Gold Nanoparticles for Drug Delivery, 3-30. Academic Press. https://doi.org/10.1016/B978-0-443-19061-2.00014-6.
Priecel, P., H. A. Salami, R. H. Padilla, Z. Zhong and J. A. López-Sánchez. (2016). Anisotropic gold nanoparticles: preparation and applications in catalysis. Chinese Journal of Catalysis, 37(10): 1619-1650. https://doi.org/10.1016/S1872-2067(16)62475-0.
Qiu, R., W. Xiong, W. Hua, Y. He, X. Sun, M. Xing and L. Wang. (2021). A biosynthesized gold nanoparticle from Staphylococcus aureus as a functional factor in muscle tissue engineering. Applied Materials Today, 22: 100905. https://doi.org/10.1016/j.apmt.2020.100905.
Quintero-García, M., E. Gutiérrez-Cortez, M. Bah, A. Rojas-Molina, M. D. L. A. Cornejo-Villegas, A. Del Real and I. Rojas-Molina. (2021). Comparative analysis of the chemical composition and physicochemical properties of the mucilage extracted from fresh and dehydrated Opuntia ficus indica cladodes. Foods, 10(9): 2137. https://doi.org/10.3390/foods10092137.
Raghunandan, R. D., M. D. Bedre, S. Basavaraja, B. Sawle, S. Y. Manjunath et al. (2010). Rapid biosynthesis of irregular shaped gold nanoparticles from macerated aqueous extracellular dried clove buds (Syzygium aromaicum) solution. Colloids and Surfaces B: Biointerfaces, 79: 235-240. https://doi.org/10.1016/j.colsurfb.2010.04.003.
Rao, D. E. C. S., K. V. Rao, T. P. Reddy and V. D. Reddy. (2009). Molecular characterization, physicochemical properties, known and potential applications of phytases: an overview. Critical Reviews in Biotechnology, 29(2): 182-198. https://doi.org/10.1080/07388550902919571.
Rokkarukala, S., T. Cherian, C. Ragavendran, R. Mohanraju, C. Kamaraj, Y. Almoshari and S. Mohan. (2023). One-pot green synthesis of gold nanoparticles using Sarcophyton crassocaule, a marine soft coral: assessing biological potentialities of antibacterial, antioxidant, anti-diabetic and catalytic degradation of toxic organic pollutants. Heliyon, 9(3): e13846. 10.1016/j.heliyon.2023.e14668.
Romo-Herrera, J. M., González, A. L., Guerrini, L., Castiello, F. R., Alonso-Núñez, G., Contreras, O. E., and Alvarez-Puebla, R. A. (2016). A study of the depth and size of concave cube Au nanoparticles as highly sensitive SERS probes. Nanoscale, 8(13): 7326-7333. 10.1039/C6NR01155A.
Sadeghi, B., M. Mohammadzadeh and B. Babakhani. (2015). Green synthesis of gold nanoparticles using Stevia rebaudiana leaf extracts: characterization and their stability. Journal of Photochemistry and Photobiology B: Biology, 148: 101-106. https://doi.org/10.1016/j.jphotobiol.2015.03.025.
Sánchez-Iglesias, A., Winckelmans, N., Altantzis, T., Bals, S., Grzelczak, M. and Liz-Marzán, L. M. (2016). High-yield seeded growth of monodisperse pentatwinned gold nanoparticles through thermally induced seed twinning. Journal of the American Chemical Society, 139(1): 107-110. https://doi.org/10.1021/jacs.6b12143.
Santos, D. K. F., R. D. Rufino, J. M. Luna, V. A. Santos and L. A. Sarubbo. (2016). Biosurfactants: multifunctional biomolecules of the 21st century. International Journal of Molecular Sciences, 17(3): 401. https://doi.org/10.3390/ijms17030401.
Sakai, T., H. Enomoto, K. Torigoe, H. Sakai and M. Abe. (2009). Surfactant-and reducer-free synthesis of gold nanoparticles in aqueous solutions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 347(1-3): 18-26. https://doi.org/10.1016/j.colsurfa.2008.10.037.
Savi, G. D., M. M. da Silva Paula, J. C. Possato, T. Barichello, D. Castagnaro and V. M. Scussel. (2012). Biological activity of gold nanoparticles towards filamentous pathogenic fungi. Journal of Nano Research, 20: 11-20. https://doi.org/10.4028/www.scientific.net/JNanoR.20.11.
Scarabelli, L. and Liz-Marzán, L. M. (2021). An extended protocol for the synthesis of monodisperse gold nanotriangles. ACS Nano, 15(12): 18600-18607. https://doi.org/10.1021/acsnano.1c10538.
Sehgal, N., K. Soni, N. Gupta and K. Kohli. (2018). Microorganism assisted synthesis of gold nanoparticles: a review. Asian Journal of Biomedical and Pharmaceutical Sciences, 8(64): 22-29.
Sheldon, R. A. (2012). Fundamentals of green chemistry: efficiency in reaction design. Chemical Society Reviews, 41(4): 1437-1451.
Singh, Abhijeet, M. M. Sharma and Amla Batra. (2013). Synthesis of gold nanoparticles using chickpea leaf extract using green chemistry. Journal of Optoelectronics and Biomedical Materials, 5(2): 27-32.
Singh, P. K. and S. Kundu. (2014). Biosynthesis of gold nanoparticles using bacteria. Proceedings of the National Academy of Sciences, India Section B: Biological Sciences, 84: 331-336. https://doi.org/10.1007/s40011-013-0230-6.
Sharma, R. K., S. Gulati and S. Mehta. (2012). Preparation of gold nanoparticles using tea: a green chemistry experiment. Journal of Chemical Education, 89(10): 1316-1318. https://doi.org/10.1021/ed2002175.
Shedbalkar, U., R. Singh, S. Wadhwani, S. Gaidhani and B. A. Chopade. (2014). Microbial synthesis of gold nanoparticles: current status and future prospects. Advances in Colloid and Interface Science, 209: 40-48. https://doi.org/10.1016/j.cis.2013.12.011.
Shunmugam, R., S. R. Balusamy, V. Kumar, S. Menon, T. Lakshmi and H. Perumalsamy. (2021). Biosynthesis of gold nanoparticles using marine microbe (Vibrio alginolyticus) and its anticancer and antioxidant analysis. Journal of King Saud University-Science, 33(1): 101260. https://doi.org/10.1016/j.jksus.2020.101260.
Smith, D. K. and B. A. Korgel. (2008). The importance of the CTAB surfactant on the colloidal seed-mediated synthesis of gold nanorods. Langmuir, 24(3): 644-649. https://doi.org/10.1021/la703625a.
Tabish, T. A., P. Dey, S. Mosca, M. Salimi, F. Palombo, P. Matousek and N. Stone. (2020). Smart gold nanostructures for light mediated cancer theranostics: combining optical diagnostics with photothermal therapy. Advanced Science, 7(15): 1903441. https://doi.org/10.1002/advs.201903441.
Thangamani, N. and N. J. C. P. L. Bhuvaneshwari. (2019). Green synthesis of gold nanoparticles using Simarouba glauca leaf extract and their biological activity on micro-organisms. Chemical Physics Letters, 732: 136587. https://doi.org/10.1016/j.cplett.2019.07.015.
Tiwari, P. M., K. Vig, V. A. Dennis and S. R. Singh. (2011). Functionalized gold nanoparticles and their biomedical applications. Nanomaterials, 1(1): 31-63. https://doi.org/10.3390/nano1010031.
Tolic, M. T., I. P. Krbavcic, P. Vujevic, B. Milinovic, I. L. Jurcevic and N. Vahcic. (2017). Effects of weather conditions on phenolic content and antioxidant capacity in juice of chokeberries (Aronia melanocarpa L.). Polish Journal of Food and Nutrition Sciences, 67(1). https://doi.org/10.1515/pjfns-2016-0009.
Velmathi, G., V. Sekar, N. S. Kavitha, M. F. Albeshr and A. Santhanam. (2024). Biosynthesis of gold nanoparticles by the extremophile bacterium Deinococcus radiodurans and an evaluation of its application in drug delivery. Process Biochemistry, 145: 250-260. https://doi.org/10.1016/j.procbio.2024.07.003.
Vial, S., R. L. Reis and J. M. Oliveira. (2017). Recent advances using gold nanoparticles as a promising multimodal tool for tissue engineering and regenerative medicine. Current Opinion in Solid State and Materials Science, 21(2): 92-112. https://doi.org/10.1016/j.cossms.2016.03.006.
Vorobyova, V., M. Skiba, K. Vinnichuk and G. Vasyliev. (2024). Synthesis of gold nanoparticles using plum waste extract with green solvents. Sustainable Chemistry for the Environment, 6: 100086. https://doi.org/10.1016/j.scenv.2024.100086.
Wuithschick, M., A. Birnbaum, S. Witte, M. Sztucki, U. Vainio, N. Pinna and J. Polte. (2015). Turkevich in new robes: key questions answered for the most common gold nanoparticle synthesis. ACS Nano, 9(7): 7052-7071. https://doi.org/10.1021/acsnano.5b01579.
Xiao, J. and L. Qi. (2011). Surfactant-assisted, shape-controlled synthesis of gold nanocrystals. Nanoscale, 3(4): 1383-1396.
Xu, F., Y. Li, X. Zhao, G. Liu, B. Pang, N. Liao et al. (2024). Diversity of fungus-mediated synthesis of gold nanoparticles: properties, mechanisms, challenges, and solving methods. Critical Reviews in Biotechnology, 44(5): 924-940. https://doi.org/10.1080/07388551.2023.2225131.
Yadid, M., R. Feiner and T. Dvir. (2019). Gold nanoparticle-integrated scaffolds for tissue engineering and regenerative medicine. Nano Letters, 19(4): 2198-2206. https://doi.org/10.1021/acs.nanolett.9b00472.
Yah, C. S. (2013). The toxicity of gold nanoparticles in relation to their physiochemical properties. Biomedical, Research, 24(3): 1-10.
Yang, S. P. (2013). Microscale synthesis and characterization of gold nanoparticles for the laboratory instruction. Chemistry Education Journal, 15: 1-11.
Zeng, C., W. Shang, X. Liang, X. Liang, Q. Chen, C. Chi et al. (2016). Cancer diagnosis and imaging-guided photothermal therapy using a dual-modality nanoparticle. ACS Applied Materials & Interfaces, 8(43): 29232-29241. https://doi.org/10.1021/acsami.6b06883.
Zhaleh, M., A. Zangeneh, S. Goorani, N. Seydi, M. M. Zangeneh, R. Tahvilian and E. Pirabbasi. (2019). In vitro and in vivo evaluation of cytotoxicity, antioxidant, antibacterial, antifungal, and cutaneous wound healing properties of gold nanoparticles produced via a green chemistry synthesis using Gundelia tournefortii L. as a capping and reducing agent. Applied Organometallic Chemistry, 33(9). e5015. https://doi.org/10.1002/aoc.5015.
Zhao, P., N. Li and D. Astruc. (2013). State of the art in gold nanoparticle synthesis. Coordination Chemistry, Reviews 257(3-4): 638-665. https://doi.org/10.1016/j.ccr.2012.09.002.
Zhao, X., N. Hou, C. Wan, L. Zhang and X. Liu. Gold Nanoparticles Synthesis Mediated by Fungus Isolated from Aerobic Granular Sludge: Process and Mechanisms. Heliyon, 10, 6 (2024).
Zheng, J., Cheng, X., Zhang, H., Bai, X., Ai, R., Shao, L. and Wang, J. (2021). Gold nanorods: the most versatile plasmonic nanoparticles. Chemical Reviews, 121(21): 13342-13453. https://pubs.acs.org/doi/10.1021/acs.chemrev.1c00422.
Zhou, S., D. Huo, S. Goines, T. H. Yang, Z. Lyu, M. Zhao et al. (2018). Enabling complete ligand exchange on the surface of gold nanocrystals through the deposition and then etching of silver. Journal of the American Chemical Society, 140(38): 11898-11901. https://doi.org/10.1021/jacs.8b06464.
Zhou, J., J. Ralston, R. Sedev and D. A. Beattie. (2009). Functionalized gold nanoparticles: synthesis, structure and colloid stability. Journal of Colloid and Interface Science, 331(2): 251-262. https://doi.org/10.1016/j.jcis.2008.12.002.