Implicaciones bioéticas en la aplicación de nanopartículas de plata (AgNPs) para el manejo de fitopatógenos
Contenido principal del artículo
Resumen
Las nanopartículas de plata (AgNPs) han ganado gran popularidad como nanomateriales versátiles debido a sus propiedades antimicrobianas. Se consideran cada vez más como una herramienta prometedora en la agricultura para el manejo de fitopatógenos. A diferencia de los agroquímicos tradicionales, las AgNPs ofrecen la ventaja de su aplicación in situ en pequeñas cantidades. Dado el uso cada vez mayor de las AgNPs en los últimos años, es importante evaluar sus riesgos potenciales para el medio ambiente y la salud humana. El objetivo de este estudio fue describir las implicaciones bioéticas asociadas con la aplicación de AgNPs en el manejo de fitopatógenos. Realizamos una revisión exhaustiva que examina los principios de autonomía, justicia, no maleficencia y beneficencia relacionados con el uso de AgNPs en el manejo de fitopatógenos. Nuestro enfoque implicó un análisis sistemático de la información cualitativa, extrayendo datos de fuentes académicas indexadas en Google académico, Scopus y Scielo, con fecha de publicación de 2015 a 2023. Manejamos estos datos en Mendeley Web y Desktop®. La información científica sugiere que las AgNPs representan una opción prometedora para el manejo eficaz de fitopatógenos debido a sus propiedades antimicrobianas. Sin embargo, es importante estudiar los mecanismos que rigen su migración para prevenir posibles daños a la salud humana y al medio ambiente. Igualmente crucial es el cumplimiento de los límites establecidos por la European Food Safety Authority (EFSA) para la ingesta diaria aceptable (IDA) de este metal.
Detalles del artículo
Mundo Nano. Revista Interdisciplinaria en Nanociencias y Nanotecnología, editada por la Universidad Nacional Autónoma de México, se distribuye bajo una Licencia Creative Commons Atribución-NoComercial 4.0 Internacional.
Basada en una obra en http://www.mundonano.unam.mx.
Citas
Al-Radadi, Najlaa S., Ahmed M. Abu-Dief. (2022). Silver nanoparticles (AgNPs) as a metal nano-therapy: possible mechanisms of antiviral action against COVID-19. Inorganic and Nano-Metal Chemistry. https://doi.org/10.1080/24701556.2022.2068585.
Al-Sultan, Saad Ibrahim, Abdel Rahman Taha Hereba, Khaled M. A. Hassanein, Sherief M. S. Abd-Allah, Usama T. Mahmoud, Sherief M. Abdel-Raheem. (2022). The impact of dietary inclusion of silver nanoparticles on growth performance, intestinal morphology, caecal microflora, carcass traits and blood parameters of broiler chickens. Italian Journal of Animal Science, 21(1). https://doi.org/10.1080/1828051X.2022.2083528.
Ali, Md Arshad, Temoor Ahmed, Wenge Wu, Afsana Hossain, Rahila Hafeez, Md Mahidul Islam Masum, Yanli Wang, Qianli An, Guochang Sun, Bin Li. (2020). Advancements in plant and microbe-based synthesis of metallic nanoparticles and their antimicrobial activity against plant pathogens. Nanomaterials. https://doi.org/10.3390/nano10061146.
Avila-Quezada, Graciela Dolores, Patrycja Golinska, Mahendra Rai. (2022). Engineered nanomaterials in plant diseases: can we combat phytopathogens? Applied Microbiology and Biotechnology 106(1): 117-29. https://doi.org/10.1007/s00253-021-11725-w.
Avila-Quezada, Graciela Dolores, Mahendra Rai. (2023). Novel nanotechnological approaches for managing phytophthora diseases of plants. Trends in Plant Science.
Bruna, Tamara, Francisca Maldonado-Bravo, Paul Jara, Nelson Caro. (2021). Silver nanoparticles and their antibacterial applications. International Journal of Molecular Sciences. https://doi.org/10.3390/ijms22137202.
Caicedo-López, Laura Helena, Ana Laura Villagómez Aranda, Diana Sáenz de la O., Carlos Eduardo Zavala Gómez, Estefanía Espinoza Márquez, Hilda Romero Zepeda. (2021). Elicitores: implicaciones bioéticas para la agricultura y la salud humana. Revista Bioética, 29(1). https://doi.org/10.1590/1983-80422021291448.
Castillo-Henríquez, Luis, Karla Alfaro-Aguilar, Jeisson Ugalde-álvarez, Laura Vega-Fernández, Gabriela Montes de Oca-Vásquez, José Roberto Vega-Baudrit. (2020). Green synthesis of gold and silver nanoparticles from plant extracts and their possible applications as antimicrobial agents in the agricultural area. Nanomaterials. https://doi.org/10.3390/nano10091763.
Chaud, Marco, Eliana B. Souto, Aleksandra Zielinska, Patricia Severino, Fernando Ba-tain, Jose Oliveira-Junior, Thais Alves. (2021). Nanopesticides in agriculture: benefits and challenge in agricultural productivity, toxicological risks to human health and environment. Toxics. https://doi.org/10.3390/toxics9060131.
Chen, Si, Xin Yan, Jose R. Peralta-Videa, Ziyao Su, Jie Hong, Lijuan Zhao. (2022). Bio-logical effects of AgNPs on crop plants: environmental implications and agricultural applications. Environmental Science: Nano. https://doi.org/10.1039/d2en00801g.
Cueva, Carolina, I. Gil-Sánchez, Alba Tamargo, Beatriz Miralles, Julian Crespo, Begoña Bartolomé, M. Victoria Moreno-Arribas. (2019). Gastrointestinal digestion of food-use silver nanoparticles in the dynamic SIMulator of the gastrointestinal tract (Simgi®). Impact on human gut microbiota. Food and Chemical Toxicology, 132. https://doi.org/10.1016/j.fct.2019.110657.
Dosoky, Waleed M., Moustafa M. G. Fouda, Ali B. Alwan, Nader R. Abdelsalam, Ayman E. Taha, Rehab Y. Ghareeb, M. R. El-Aassar, Asmaa F. Khafaga. (2021). Dietary supplementation of silver-silica nanoparticles promotes histological, immunological, ultrastructural, and performance parameters of broiler chickens. Scientific Reports, 11(1). https://doi.org/10.1038/s41598-021-83753-5.
El-Batal, Ahmed I., Farag M. Mosallam, Gharieb S. El-Sayyad. (2018). Synthesis of metallic silver nanoparticles by fluconazole drug and gamma rays to inhibit the growth of multidrug-resistant microbes. Journal of Cluster Science, 29(6). https://doi.org/10.1007/s10876-018-1411-5.
Fang, Yi, Ramaraja P. Ramasamy. (2015). Current and prospective methods for plant disease detection. Biosensors. https://doi.org/10.3390/bios5030537.
Ferdous, Zannatul, Abderrahim Nemmar. (2020). Health impact of silver nanoparticles: a review of the biodistribution and toxicity following various routes of exposure. International Journal of Molecular Sciences. https://doi.org/10.3390/ijms21072375.
Fletcher, Nathaniel D., Heather C. Lieb, Katherine M. Mullaugh. (2019). Stability of silver nanoparticle sulfidation products. Science of the Total Environment, 648. https://doi.org/10.1016/j.scitotenv.2018.08.239.
Gandin, Anthony, Pierre Dizengremel, Yves Jolivet. (2021). Integrative role of plant mitochondria facing oxidative stress: the case of ozone. Plant Physiology and Biochemistry. https://doi.org/10.1016/j.plaphy.2020.12.019.
Géczi, Zoltán, Ivett Róth, Zsófia Kőhidai, László Kőhidai, Khaled Mukaddam, Péter Hermann, Dániel Végh, Tivadar Zelles. (2023). The use of Trojan-horse drug delivery system in managing periodontitis. International Dental Journal. https://doi.org/10.1016/j.identj.2022.08.003.
Ghobashy, Mohamed Mohamady, Mohamed Abd Elkodous, Soha Hamdy Shabaka, Sherif A. Younis, Dalal Mohamed Alshangiti, Mohamed Madani, Samera Ali Al-Gahtany et al. (2021). An overview of methods for production and detection of silver nanoparticles, with emphasis on their fate and toxicological effects on human, soil, and aquatic environment. Nanotechnology Reviews. https://doi.org/10.1515/ntrev-2021-0066.
Gliga, Anda R., Sara Skoglund, Inger Odnevall Wallinder, Bengt Fadeel, Hanna L. Karlsson. (2014). Size-dependent cytotoxicity of silver nanoparticles in human lung cells: the role of cellular uptake, agglomeration and ag release. Particle and Fibre Toxicology, 11(1). https://doi.org/10.1186/1743-8977-11-11.
Grün, Anna Lena, Susanne Straskraba, Stefanie Schulz, Michael Schloter, Christoph Emmerling. (2018). Long-term effects of environmentally relevant concentrations of silver nanoparticles on microbial biomass, enzyme activity, and func-tional genes involved in the nitrogen cycle of loamy soil. Journal of Environmental Sciences (China), 69. https://doi.org/10.1016/j.jes.2018.04.013.
He, Xiaojia, Hua Deng, Huey min Hwang. (2019). The current application of nano-technology in food and agriculture. Journal of Food and Drug Analysis. https://doi.org/10.1016/j.jfda.2018.12.002.
Hsiao, I. Lun, Yi Kong Hsieh, Chu Fang Wang, I. Chieh Chen, Yuh Jeen Huang. (2015). Trojan-horse mechanism in the cellular uptake of silver nanoparticles verified by direct intra- and extracellular silver speciation analysis. Environmental Science and Technology, 49(6). https://doi.org/10.1021/es504705p.
Huang, Danyu, Fei Dang, Yingnan Huang, Ning Chen, Dongmei Zhou. (2022). Up-take, translocation, and transformation of silver nanoparticles in plants. Environmental Science: Nano. https://doi.org/10.1039/d1en00870f.
Islam, Anti, Chanchal Mandal, Ahsan Habib. (2021). Antibacterial potential of synthesized silver nanoparticles from leaf extract of moringa oleifera. Journal of Advanced Biotechnology and Experimental Therapeutics, 4(1). https://doi.org/10.5455/jabet.2021.d108.
Jadhav, Vikram, Arun Bhagare, Ismat H. Ali, Akshay Dhayagude, Dnyaneshwar Lokhande, Jayraj Aher, Mohammed Jameel, Mycal Dutta. (2022). Role of moringa oleifera on green synthesis of metal/metal oxide nanomaterials. Journal of Nanomaterials. https://doi.org/10.1155/2022/2147393.
Jiang, Xiumei, Teodora Micləuş, Liming Wang, Rasmus Foldbjerg, Duncan S. Suther-land, Herman Autrup, Chunying Chen, Christiane Beer. (2015). Fast intracellular dissolution and persistent cellular uptake of silver nanoparticles in CHO-K1 cells: implication for cytotoxicity. Nanotoxicology, 9(2). https://doi.org/10.3109/17435390.2014.907457.
Kadar, Enikö, Michael Cunliffe, Andrew Fisher, Björn Stolpe, Jamie Lead, Zongbo Shi. (2014). Chemical interaction of atmospheric mineral dust-derived nanoparticles with natural seawater – EPS and sunlight-mediated changes. Science of the Total Environment, 468-469. https://doi.org/10.1016/j.scitotenv.2013.08.059.
Kale, S. K., Parishwad, G. V., Patil, A. S. H. A. S. (2021). Emerging agriculture applications of silver nanoparticles. ES Food & Agroforestry, 1-22. https://www.espub-lisher.com/uploads/article_pdf/esfaf438.pdf.
Kubavat, Kinjal, Pooja Trivedi, Hafsa Ansari, Anita Kongor, Manthan Panchal, Vinod Jain, Gaurang Sindhav. (2022). Green synthesis of silver nanoparticles using dietary antioxidant rutin and its biological contour. Beni-Suef UniversityJournal of Basic and Applied Sciences, 11(1). https://doi.org/10.1186/s43088-022-00297-x.
Kulabhusan, Prabir Kumar, Anugrah Tripathi, Krishna Kant. (2022). Gold nanopar-ticles and plant pathogens: an overview and prospective for biosensing in for-estry. Sensors, 22(3): 1-18. https://doi.org/10.3390/s22031259.
Kulikova, N. A. (2021). Silver nanoparticles in soil: input, transformation, and toxicity. Eurasian Soil Science, 54(3). https://doi.org/10.1134/S1064229321030091.
Kumar, Aravinda, Baburai Nagesh. (2019). Foliar application of nanofertilizers in agricultural crops – A review of foliar application of nanofertilizers in agricultural crops – A review. J. Farm Sci., 32(3).Li, Bin, Sew Lay Chua, Dingyi Yu, Sheot Harn Chan, Angela Li. (2022). Detection, identification and size distribution of silver nanoparticles (AgNPs) in milk and migration study for breast milk storage bags. Molecules, 27(8). https://doi.org/10.3390/molecules27082539.
Lim, Jaesung, Yun Young Lee, Young Bin Choy, Wooram Park, Chun Gwon Park. (2021). Sepsis diagnosis and treatment using nanomaterials. Biomedical Engineering Letters. https://doi.org/10.1007/s13534-021-00200-0.
Lira-Saldivar, Ricardo Hugo, Bulmaro Méndez Argüello, Gladys de los Santos Villa-rreal, Ileana Vera Reyes. (2018). Potencial de la nanotecnología en la agricultura. Acta Universitaria, 28(2): 9-24. https://doi.org/10.15174/au.2018.1575.
Liu, Guangfu, Meng Zhang, Yujian Jin, Xiaoji Fan, Jiahui Xu, Youchao Zhu, Zheng-wei Fu, Xiangliang Pan, Haifeng Qian. (2017). The effects of low concentrations of silver nanoparticles on wheat growth, seed quality, and soil microbial communities. Water, Air, and Soil Pollution, 228(9). https://doi.org/10.1007/s11270-017-3523-1.
MacCuspie, Robert I., Kim Rogers, Manomita Patra, Zhiyong Suo, Andrew J. Allen, Matthew N. Martin, Vincent A. Hackley. (2011). Challenges for physical charac-terization of silver nanoparticles under pristine and environmentally relevant conditions. Journal of Environmental Monitoring, 13(5). https://doi.org/10.1039/c1em10024f.
McGillicuddy, E., I. Murray, S. Kavanagh, L. Morrison, A. Fogarty, M. Cormican, P. Dockery, M. Prendergast, N. Rowan, D. Morris. (2017). Silver nanoparticles in the environment: sources, detection and ecotoxicology. Science of the Total Environment. https://doi.org/10.1016/j.scitotenv.2016.10.041.
Mikhailova, Ekaterina O. (2020). Silver nanoparticles: mechanism of action and probable bio-application. Journal of Functional Biomaterials. https://doi.org/10.3390/jfb11040084.
Mussin, Javier, Gustavo Giusiano. (2022). Biogenic silver nanoparticles as antifungal agents. Frontiers in Chemistry. https://doi.org/10.3389/fchem.2022.1023542.
Ouay, Benjamin Le, Francesco Stellacci. (2015). Antibacterial activity of silver nanoparticles: a surface science insight. Nano Today. https://doi.org/10.1016/j.nantod.2015.04.002.
Park, Eun Jung, Jongheop Yi, Younghun Kim, Kyunghee Choi, Kwangsik Park. (2010). Silver nanoparticles induce cytotoxicity by a Trojan-horse type mechanism. Toxicology in Vitro, 24(3). https://doi.org/10.1016/j.tiv.2009.12.001.
Preetha, P. Selva, N. Balakrishnan. (2017). A review of nano fertilizers and their use and functions in soil. International Journal of Current Microbiology and Applied Sciences, 6(12). https://doi.org/10.20546/ijcmas.2017.612.364.
Rai, Mahendra, Avinash P. Ingle, Joanna Trzcińska-Wencel, Magdalena Wypij, Shital Bonde, Alka Yadav, Gabriela Kratošová, Patrycja Golińska. (2021). Biogenic silver nanoparticles: what we know and what do we need to know? Nanomaterials. https://doi.org/10.3390/nano11112901.
Rajwade, Jyutika M., R. G. Chikte, K. M. Paknikar. (2020). Nanomaterials: new weapons in a crusade against phytopathogens. Applied Microbiology and Bio-technolog y. https://doi.org/10.1007/s00253-019-10334-y.
Rastogi, Anshu, Marek Zivcak, Oksana Sytar, Hazem M. Kalaji, Xiaolan He, Sonia Mbarki, Marian Brestic. (2017). Impact of metal and metal oxide nanoparticles on plant: a critical review. Frontiers in Chemistry. https://doi.org/10.3389/fchem.2017.00078.
Ratan, Zubair Ahmed, Mohammad Faisal Haidere, Md Nurunnabi, Sadi Md Shahriar, A. J. Saleh Ahammad, Youn Young Shim, Martin J. T. Reaney, Jae Youl Cho. (2020). Green chemistry synthesis of silver nanoparticles and their potential anticancer effects. Cancers. https://doi.org/10.3390/cancers12040855.
Rong, Hongyan, Shikha Garg, Paul Westerhoff, T. David Waite. (2018). In vitro characterization of reactive oxygen species (ROS) generation by the commercially available MesosilverTM dietary supplement. Environmental Science: Nano, 5(11). https://doi.org/10.1039/c8en00701b.
Saravanan, A., P. Senthil Kumar, S. Karishma, Dai Viet N. Vo, S. Jeevanantham, P. R. Yaashikaa, Cynthia Susan George. (2021). A review on biosynthesis of metal nanoparticles and its environmental applications. Chemosphere, 264. https://doi.org/10.1016/j.chemosphere.2020.128580.
Sharma, Virender K., Christie M. Sayes, Binglin Guo, Suresh Pillai, Jason G. Parsons, Chuanyi Wang, Bing Yan, Xingmao Ma. (2019). Interactions between silver nanoparticles and other metal nanoparticles under environmentally relevant conditions: a review. Science of the Total Environment, 653. https://doi.org/10.1016/j.scitotenv.2018.10.411.
Shousha, Wafaa G., Wael M. Aboulthana, Alaa H. Salama, Mahmoud H. Saleh, Ehab A. Essawy. (2019). Evaluation of the biological activity of moringa oleifera leaves extract after incorporating silver nanoparticles, in vitro study. Bulletin of the National Research Centre, 43(1). https://doi.org/10.1186/s42269-019-0221-8.
Tehri, Nimisha, Amit Vashishth, Anjum Gahlaut, Vikas Hooda. (2022). Biosynthesis, antimicrobial spectra and applications of silver nanoparticles: current progress and future prospects. Inorganic and Nano-Metal Chemistry, 52(1): 1-19. https://doi.org/10.1080/24701556.2020.1862212.
Tiwari, Ratnakar, Radha Dutt Singh, Hafizurrahman Khan, Siddhartha Gangopad-hyay, Sandeep Mittal, Vikas Singh, Nidhi Arjaria et al. (2017). Oral Subchronic exposure to silver nanoparticles causes renal damage through apoptotic impairment and necrotic cell death. Nanotoxicology, 11(5). https://doi.org/10.1080/17435390.2017.1343874.
Tortella, G. R., O. Rubilar, N. Durán, M. C. Diez, M. Martínez, J. Parada, A. B. Seabra. (2020). Silver nanoparticles: toxicity in model organisms as an overview of its hazard for human health and the environment. Journal of Hazardous Materials. https://doi.org/10.1016/j.jhazmat.2019.121974.
Tsang, Benjamin, Hifsa Zahid, Rida Ansari, Richard Chi Yeung Lee, Aman Partap, Rob-ert Gerlai. (2017). Breeding zebrafish: a review of different methods and a discussion on standardization. Zebrafish. https://doi.org/10.1089/zeb.2017.1477.
Wimmer, Andreas, Anna Kalinnik, Michael Schuster. (2018). New insights into the formation of silver-based nanoparticles under natural and semi-natural condi-tions. Water Research, 141. https://doi.org/10.1016/j.watres.2018.05.015.
Xu, Li, Yi Yi Wang, Jie Huang, Chun Yuan Chen, Zhen Xing Wang, Hui Xie. 2020. Silver nanoparticles: synthesis, medical applications and biosafety. Theranos-tics. https://doi.org/10.7150/thno.45413.
Yang, Wenxiu, Lin Li, Shuo Wang, Jinshu Liu. (2020). Preparation of multifunction-al AgNPs/PAN nanofiber membrane for air filtration by one-step process. Pig-ment and Resin Technology, 49(5). https://doi.org/10.1108/PRT-08-2019-0075.
Yang, Yaning, Shengmin Xu, Guangmin Xu, Rui Liu, An Xu, Shaopeng Chen, Lijun Wu. (2019). Effects of ionic strength on physicochemical properties and toxic-ity of silver nanoparticles. Science of the Total Environment, 647. https://doi.org/10.1016/j.scitotenv.2018.08.064.
Yang, Yi, Shimei Zheng, Ruixuan Li, Xin Chen, Kunkun Wang, Binbin Sun, Yinqing Zhang, Lingyan Zhu. (2021). New insights into the facilitated dissolution and sulfidation of silver nanoparticles under simulated sunlight irradiation in aquatic environments by extracellular polymeric substances. Environmental Science: Nano, 8(3). https://doi.org/10.1039/d0en01142h.
Yaqoob, Asim Ali, Khalid Umar, Mohamad Nasir Mohamad Ibrahim. (2020). Silver nanoparticles: various methods of synthesis, size affecting factors and their potential applications – A review. Applied Nanoscience (Switzerland). https://doi.org/10.1007/s13204-020-01318-w.
Yin, Iris Xiaoxue, Jing Zhang, Irene Shuping Zhao, May Lei Mei, Quanli Li, Chun Hung Chu. (2020). The antibacterial mechanism of silver nanoparticles and its application in dentistry. International Journal of Nanomedicine. https://doi.org/10.2147/IJN.S246764.
You, Fang, Wenqin Tang, Lin Yue Lanry Yung. (2018). Real-time monitoring of the Trojan-horse effect of silver nanoparticles by using a genetically encoded fluo-rescent cell sensor. Nanoscale, 10(16). https://doi.org/10.1039/c7nr05975b.
Yu, Yuanyuan, Zhongbo Zhou, Guocheng Huang, Hong Cheng, Le Han, Shanshan Zhao, Yucheng Chen, Fangang Meng. (2022). Purifying water with silver nanopar-ticles (AgNPs)-incorporated membranes: recent advancements and critical challenges. Water Research. https://doi.org/10.1016/j.watres.2022.118901.
Zhao, Guang, Zi Yang Wang, Lian Xu, Cheng Xing Xia, Jing Xia Liu. (2019). Silver nanoparticles induce abnormal touch responses by damaging neural circuits in zebrafish embryos. Chemosphere, 229. https://doi.org/10.1016/j.chemosphere.2019.04.223.