Au-Ru nanoparticles in catalysis, analysis from first-principles calculations

Contenido principal del artículo

Uriel Omar Molina Tenrreyra
https://orcid.org/0000-0002-3924-0998
Rodrigo Hebert Mojica Molina
https://orcid.org/0000-0002-7091-3791
Ana Elizabeth Torres Hernández
https://orcid.org/0000-0002-3739-6198

Resumen

Nobel-metal based bimetallic nanoparticles (BNPs) are composed of two different metals presenting heteroatom interactions. In these nanomaterials it is possible to tune the relative composition that allows for the modulation of electronic and catalytic properties. They are of great interest for their technological and industrial applications due to their catalytic properties which may exceed those of their monometallic analogue structures. A theoretical perspective on the electronic, stability and reactivity related properties of gold, ruthenium and Au-Ru nanoparticles is presented herein. This analysis considered the use of first-principles methods and the cluster approach to get a physical insight into the novel properties that arise from the combination of two metals in the nano and sub-nano scale. Au-Ru BNPs may present a higher catalytic efficiency than the monometallic structures due to the synergy between the metals in the CO oxidation reaction. However, the effect of Ru over the Au-based NPs on their enhanced catalytic activity is not well understood. A density functional theory (DFT) study of one Au-Ru cluster model was performed to analyze its electronic properties and to gain a better understanding in the stability of structures with various metal compositions.


Based on the computed mixing enthalpy, the Au-Ru cluster with a core-shell type morphology and a relative composition close to 1:0.75 was determined as the most stable one. Finally, a CO oxidation reaction pathway different from that determined for Au-NPs was presented for the free particle occurring in the Au-Ru interface. O2 may undergo adsorption on a Ru site through a dissociative process. The computed CO oxidation barrier height is lower than that found for the monometallic Ru clusters but is higher than that determined for Au clusters. This study will guide further research on this kind of model nanostructures in heterogeneous catalysis.


 

Detalles del artículo

Cómo citar
Molina Tenrreyra, U. O., Mojica Molina, R. H., & Torres Hernández, A. E. (2022). Au-Ru nanoparticles in catalysis, analysis from first-principles calculations. Mundo Nano. Revista Interdisciplinaria En Nanociencias Y Nanotecnología, 15(29), 1e-21e. https://doi.org/10.22201/ceiich.24485691e.2022.29.69700
Sección
Artículos de investigación

Citas

An, K., Somorjai, G. A. (2015). Nanocatalysis I: Synthesis of metal and bimetallic nanoparticles and porous oxides and their catalytic reaction studies. Catalysis Letters, 145(1): 233-248. https://doi.org/10.1007/s10562-014-1399-x

Bhol, P., Bhavya, M. B., Swain, S., Saxena, M., Samal, A. K. (2020). Modern chemical routes for the controlled synthesis of anisotropic bimetallic nanostructures and their application in catalysis. Frontiers in Chemistry, 19(8): 357. https://doi.org/10.3389/fchem.2020.00357

Blöchl, P. E. (1994). Projector augmented-wave method. Physical Review B, 50(24): 17953-17979. https://doi.org/10.1103/PhysRevB.50.17953

Boronat, M., Corma, A. (2010). Oxygen activation on gold nanoparticles: separating the influence of particle size, particle shape and support interaction. Dalton Trans., 39(36): 8538-8546. https://doi.org/10.1039/C002280B

Calzada, L. A., Collins, S. E., Han, C. W., Ortalan, V., Zanella, R. (2017). Synergetic effect of bimetallic Au-Ru/TiO2 catalysts for complete oxidation of methanol. Applied Catalysis B: Environmental, 207: 79-92.

Calzada, L. A., Louis, C., Wan Han, C., Ortalan, V., Zanella, R. (2020). Au-Ru/TiO2 prepared by deposition-precipitation with urea: Relevant synthesis parameters to obtain bimetallic particles. Applied Catalysis B: Environmental, 264: 118503. https://doi.org/10.1016/j.apcatb.2019.118503

Dimitratos, N., Lopez-Sanchez, J. A., Hutchings, G. J. (2012). Selective liquid phase oxidation with supported metal nanoparticles. Chemical Science, 3(1): 20-44. https://doi.org/10.1039/C1SC00524C

Dovesi, R., Civalleri, B., Roetti, C., Saunders, V. R., Orlando, R. (2005). Ab initio quantum simulation in solid state chemistry. Reviews in Computational Chemistry, 1-125. John Wiley & Sons, Ltd. https://doi.org/10.1002/0471720895.ch1

Ferrando, R., Jellinek, J., Johnston, R. L. (2008). Nanoalloys: from theory to applications of alloy clusters and nanoparticles. Chemical Reviews, 108(3): 845-910. https://doi.org/10.1021/cr040090g

Freund, H.-J., Meijer, G., Scheffler, M., Schlögl, R., Wolf, M. (2011). CO oxidation as a prototypical reaction for heterogeneous processes. Angewandte Chemie International Edition, 50(43): 10064-10094. https://doi.org/10.1002/anie.201101378

Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Petersson, G. A., Nakatsuji, H., Li, X., Caricato, M., Marenich, A. V, Bloino, J., Janesko, B. G., Gomperts, R., Mennucci, B., Hratchian, H. P., Ortiz, J. V, Fox, D. J. (2016). Gaussian16 Revision C.01.

Garbounis, D. N., Tsipis, A. C., Tsipis, C. A. (2010). Structural, electronic, bonding, magnetic and optical properties of bimetallic [ Ru n Au m ] 0 / þ ( n þ m ≤ 3 ) clusters. Journal of Computational Chemistr, 31(16): 2836-2852. https://doi.org/10.1002/jcc.21575. 31(16):2836-52

Grimme, S., Antony, J., Ehrlich, S., Krieg, H. (2010). A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. Journal of Chemical Physics,132(15): 154104. https://doi.org/10.1063/1.3382344

Grimme, S., Ehrlich, S., Goerigk, L. (2011). Effect of the damping function in dispersion corrected density functional theory. Journal of Computational Chemistry, 32(7): 1456-1465. https://doi.org/10.1002/jcc.21759

Huber, K. P., Herzberg, G. (1979). Constants of diatomic molecules. In Molecular Spectra and Molecular Structure: IV. Constants of Diatomic Molecules, 8-689. Springer US. https://doi.org/10.1007/978-1-4757-0961-2_2

Khandy, S. A., Islam, I., Gupta, D. C., Khenata, R., Laref, A. (2019). Lattice dynamics, mechanical stability and electronic structure of Fe-based Heusler semiconductors. Scientific Reports, 9(1): 1475. https://doi.org/10.1038/s41598-018-37740-y

Kresse G., Joubert, D. (1999). From ultrasoft pseudopotentials to the projector augmented-wave method. Physical Review B – Condensed Matter and Materials Physics, 59: 1758-1775.

Kresse, G., Furthmüller, J. (1996a). Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Computational Materials Science, 6(1): 15-50. https://doi.org/10.1016/0927-0256(96)00008-0

Kresse, G., Furthmüller, J. (1996b). Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Physical Review B, 54(16): 11169-11186. https://doi.org/10.1103/PhysRevB.54.11169

Kresse, G., Hafner, J. (1993). Ab initio molecular dynamics for liquid metals. Physical Review B, 47(1): 558–561. https://doi.org/10.1103/PhysRevB.47.558

Kresse, G., Hafner, J. (1994). Ab initio molecular-dynamics simulation of the liquid-metal–amorphous-semiconductor transition in germanium. Physical Review B, 49(20): 14251-14269. https://doi.org/10.1103/PhysRevB.49.14251

Landman, U., Yoon, B., Zhang, C., Heiz, U., Arenz, M. (2007). Factors in gold nanocatalysis: oxidation of CO in the non-scalable size regime. Topics in Catalysis, 44(1): 145-158. https://doi.org/10.1007/s11244-007-0288-6

Larsen, A. H., Mortensen, J. J., Blomqvist, J., Castelli, I. E., Christensen, R., Dułak, M., Friis, J., Groves, M. N., Hammer, B., Hargus, C., Hermes, E. D., Jennings, P. C., Jensen, P. B., Kermode, J., Kitchin, J. R., Kolsbjerg, E. L., Kubal, J., Kaasbjerg, K., Lysgaard, S., Jacobsen, K. W. (2017). The atomic simulation environment a Python library for working with atoms. Journal of Physics: Condensed Matter, 29(27): 273002. https://doi.org/10.1088/1361-648x/aa680e

Liu, J.-X., Filot, I. A. W., Su, Y., Zijlstra, B., Hensen, E. J. M. (2018). Optimum particle size for gold-catalyzed CO oxidation. The Journal of Physical Chemistry C, 122(15): 8327-8340. https://doi.org/10.1021/acs.jpcc.7b12711

Louis, C. (2007). Gold nanoparticles: recent advances in CO oxidation. Nanoparticles and Catalysis, 475-503. https://doi.org/https://doi.org/10.1002/9783527621323.ch15

Lu, B.-J., Li, X.-T., Zhao, Y.-J., Wang, Z.-Y.,Yang, X.-B. (2017). Structural stabilities and electronic properties of Mg28-nAln clusters: A first-principles study. AIP Advances, 7(9): 95023. https://doi.org/10.1063/1.5000792

Miedema, A. R., de Boer, F. R., de Chatel, P. F. (1973). Empirical description of the role of electronegativity in alloy formation. Journal of Physics F: Metal Physics, 3(8): 1558-1576. https://doi.org/10.1088/0305-4608/3/8/012

Momma, K., Izumi, F. (2011). Vesta for three-dimensional visualization of crystal, volumetric and morphology data. Journal of Applied Crystallography, 44(6): 1272-1276. https://doi.org/10.1107/S0021889811038970

Nasrabadi, H. T., Abbasi, E., Davaran, S., Kouhi, M., Akbarzadeh, A. (2016). Bimetallic nanoparticles: Preparation, properties, and biomedical applications. Artificial Cells, Nanomedicine and Biotechnology, 44(1): 376-380. https://doi.org/10.3109/21691401.2014.953632

Perdew, J. P., Ruzsinszky, A., Csonka, G. I., Vydrov, O. A., Scuseria, G. E., Constantin, L. A., Zhou, X., Burke, K. (2008). Restoring the density-gradient expansion for exchange in solids and surfaces. Phys. Rev. Lett., 100(13): 136406. https://doi.org/10.1103/PhysRevLett.100.136406

Prati, L., Villa, A., Jouve, A., Beck, A., Evangelisti, C., Savara, A. (2018). Gold as a modifier of metal nanoparticles: effect on structure and catalysis. Faraday Discussions, 208: 395-407. https://doi.org/10.1039/C7FD00223H

Pundlik, S. S., Kalyanaraman, K., Waghmare, U. V. (2011). First-principles investigation of the atomic and electronic structure and magnetic moments in gold nanoclusters. The Journal of Physical Chemistry C, 115(10): 3809-3820. https://doi.org/10.1021/jp102482g

Roldán, A., González, S., Ricart, J. M., Illas, F. (2009). Critical size for O2 dissociation by Au nanoparticles. ChemPhysChem, 10(2): 348-351. https://doi.org/https://doi.org/10.1002/cphc.200800702

Stradi, D., Jelver, L., Smidstrup, S., Stokbro, K. (2017). Method for determining optimal supercell representation of interfaces. Journal of Physics: Condensed Matter, 29(18): 185901. ArXiv.

Tojo, C., Buceta, D., López-Quintela, M. A. (2017). On metal segregation of bimetallic nanocatalysts prepared by a one-pot method in microemulsions. Catalysts, 7(2): 68. https://doi.org/10.3390/catal7020068

Yadav, J., Saini, S. (2020). Atop adsorption of oxygen on small sized gold clusters: Analysis of size and site reactivity from restructuring perspective. Computational and Theoretical Chemistry, 1191: 113014. https://doi.org/https://doi.org/10.1016/j.comptc.2020.113014

Yao, Y., Huang, Z., Hughes, L. A., Gao, J., Li, T., Morris, D., Zeltmann, S. E., Savitzky, B. H., Ophus, C., Finfrock, Y. Z., Dong, Q., Jiao, M., Mao, Y., Chi, M., Zhang, P., Li, J., Minor, A. M., Shahbazian-Yassar, R., Hu, L. (2021). Extreme mixing in nanoscale transition metal alloys. Matter, 4(7): 2340-2353. https://doi.org/10.1016/j.matt.2021.04.014

Zaleska-Medynska, A., Marchelek, M., Diak, M., Grabowska, E. (2016). Noble metal-based bimetallic nanoparticles: the effect of the structure on the optical, catalytic and photocatalytic properties. Advances in Colloid and Interface Science, 229: 80-107. https://doi.org/https://doi.org/10.1016/j.cis.2015.12.008

Zhang, S.-T., Li, C.-M., Yan, H., Wei, M., Evans, D. G., Duan, X. (2014). Density functional theory study on the metal–support interaction between Ru cluster and anatase TiO2(101) surface. The Journal of Physical Chemistry C, 118(7): 3514-3522. https://doi.org/10.1021/jp409627p