Au-Ru nanoparticles in catalysis, analysis from first-principles calculations
Contenido principal del artículo
Resumen
Nobel-metal based bimetallic nanoparticles (BNPs) are composed of two different metals presenting heteroatom interactions. In these nanomaterials it is possible to tune the relative composition that allows for the modulation of electronic and catalytic properties. They are of great interest for their technological and industrial applications due to their catalytic properties which may exceed those of their monometallic analogue structures. A theoretical perspective on the electronic, stability and reactivity related properties of gold, ruthenium and Au-Ru nanoparticles is presented herein. This analysis considered the use of first-principles methods and the cluster approach to get a physical insight into the novel properties that arise from the combination of two metals in the nano and sub-nano scale. Au-Ru BNPs may present a higher catalytic efficiency than the monometallic structures due to the synergy between the metals in the CO oxidation reaction. However, the effect of Ru over the Au-based NPs on their enhanced catalytic activity is not well understood. A density functional theory (DFT) study of one Au-Ru cluster model was performed to analyze its electronic properties and to gain a better understanding in the stability of structures with various metal compositions.
Based on the computed mixing enthalpy, the Au-Ru cluster with a core-shell type morphology and a relative composition close to 1:0.75 was determined as the most stable one. Finally, a CO oxidation reaction pathway different from that determined for Au-NPs was presented for the free particle occurring in the Au-Ru interface. O2 may undergo adsorption on a Ru site through a dissociative process. The computed CO oxidation barrier height is lower than that found for the monometallic Ru clusters but is higher than that determined for Au clusters. This study will guide further research on this kind of model nanostructures in heterogeneous catalysis.
Detalles del artículo
Mundo Nano. Revista Interdisciplinaria en Nanociencias y Nanotecnología, editada por la Universidad Nacional Autónoma de México, se distribuye bajo una Licencia Creative Commons Atribución-NoComercial 4.0 Internacional.
Basada en una obra en http://www.mundonano.unam.mx.
Citas
An, K., Somorjai, G. A. (2015). Nanocatalysis I: Synthesis of metal and bimetallic nanoparticles and porous oxides and their catalytic reaction studies. Catalysis Letters, 145(1): 233-248. https://doi.org/10.1007/s10562-014-1399-x
Bhol, P., Bhavya, M. B., Swain, S., Saxena, M., Samal, A. K. (2020). Modern chemical routes for the controlled synthesis of anisotropic bimetallic nanostructures and their application in catalysis. Frontiers in Chemistry, 19(8): 357. https://doi.org/10.3389/fchem.2020.00357
Blöchl, P. E. (1994). Projector augmented-wave method. Physical Review B, 50(24): 17953-17979. https://doi.org/10.1103/PhysRevB.50.17953
Boronat, M., Corma, A. (2010). Oxygen activation on gold nanoparticles: separating the influence of particle size, particle shape and support interaction. Dalton Trans., 39(36): 8538-8546. https://doi.org/10.1039/C002280B
Calzada, L. A., Collins, S. E., Han, C. W., Ortalan, V., Zanella, R. (2017). Synergetic effect of bimetallic Au-Ru/TiO2 catalysts for complete oxidation of methanol. Applied Catalysis B: Environmental, 207: 79-92.
Calzada, L. A., Louis, C., Wan Han, C., Ortalan, V., Zanella, R. (2020). Au-Ru/TiO2 prepared by deposition-precipitation with urea: Relevant synthesis parameters to obtain bimetallic particles. Applied Catalysis B: Environmental, 264: 118503. https://doi.org/10.1016/j.apcatb.2019.118503
Dimitratos, N., Lopez-Sanchez, J. A., Hutchings, G. J. (2012). Selective liquid phase oxidation with supported metal nanoparticles. Chemical Science, 3(1): 20-44. https://doi.org/10.1039/C1SC00524C
Dovesi, R., Civalleri, B., Roetti, C., Saunders, V. R., Orlando, R. (2005). Ab initio quantum simulation in solid state chemistry. Reviews in Computational Chemistry, 1-125. John Wiley & Sons, Ltd. https://doi.org/10.1002/0471720895.ch1
Ferrando, R., Jellinek, J., Johnston, R. L. (2008). Nanoalloys: from theory to applications of alloy clusters and nanoparticles. Chemical Reviews, 108(3): 845-910. https://doi.org/10.1021/cr040090g
Freund, H.-J., Meijer, G., Scheffler, M., Schlögl, R., Wolf, M. (2011). CO oxidation as a prototypical reaction for heterogeneous processes. Angewandte Chemie International Edition, 50(43): 10064-10094. https://doi.org/10.1002/anie.201101378
Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Petersson, G. A., Nakatsuji, H., Li, X., Caricato, M., Marenich, A. V, Bloino, J., Janesko, B. G., Gomperts, R., Mennucci, B., Hratchian, H. P., Ortiz, J. V, Fox, D. J. (2016). Gaussian16 Revision C.01.
Garbounis, D. N., Tsipis, A. C., Tsipis, C. A. (2010). Structural, electronic, bonding, magnetic and optical properties of bimetallic [ Ru n Au m ] 0 / þ ( n þ m ≤ 3 ) clusters. Journal of Computational Chemistr, 31(16): 2836-2852. https://doi.org/10.1002/jcc.21575. 31(16):2836-52
Grimme, S., Antony, J., Ehrlich, S., Krieg, H. (2010). A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. Journal of Chemical Physics,132(15): 154104. https://doi.org/10.1063/1.3382344
Grimme, S., Ehrlich, S., Goerigk, L. (2011). Effect of the damping function in dispersion corrected density functional theory. Journal of Computational Chemistry, 32(7): 1456-1465. https://doi.org/10.1002/jcc.21759
Huber, K. P., Herzberg, G. (1979). Constants of diatomic molecules. In Molecular Spectra and Molecular Structure: IV. Constants of Diatomic Molecules, 8-689. Springer US. https://doi.org/10.1007/978-1-4757-0961-2_2
Khandy, S. A., Islam, I., Gupta, D. C., Khenata, R., Laref, A. (2019). Lattice dynamics, mechanical stability and electronic structure of Fe-based Heusler semiconductors. Scientific Reports, 9(1): 1475. https://doi.org/10.1038/s41598-018-37740-y
Kresse G., Joubert, D. (1999). From ultrasoft pseudopotentials to the projector augmented-wave method. Physical Review B – Condensed Matter and Materials Physics, 59: 1758-1775.
Kresse, G., Furthmüller, J. (1996a). Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Computational Materials Science, 6(1): 15-50. https://doi.org/10.1016/0927-0256(96)00008-0
Kresse, G., Furthmüller, J. (1996b). Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Physical Review B, 54(16): 11169-11186. https://doi.org/10.1103/PhysRevB.54.11169
Kresse, G., Hafner, J. (1993). Ab initio molecular dynamics for liquid metals. Physical Review B, 47(1): 558–561. https://doi.org/10.1103/PhysRevB.47.558
Kresse, G., Hafner, J. (1994). Ab initio molecular-dynamics simulation of the liquid-metal–amorphous-semiconductor transition in germanium. Physical Review B, 49(20): 14251-14269. https://doi.org/10.1103/PhysRevB.49.14251
Landman, U., Yoon, B., Zhang, C., Heiz, U., Arenz, M. (2007). Factors in gold nanocatalysis: oxidation of CO in the non-scalable size regime. Topics in Catalysis, 44(1): 145-158. https://doi.org/10.1007/s11244-007-0288-6
Larsen, A. H., Mortensen, J. J., Blomqvist, J., Castelli, I. E., Christensen, R., Dułak, M., Friis, J., Groves, M. N., Hammer, B., Hargus, C., Hermes, E. D., Jennings, P. C., Jensen, P. B., Kermode, J., Kitchin, J. R., Kolsbjerg, E. L., Kubal, J., Kaasbjerg, K., Lysgaard, S., Jacobsen, K. W. (2017). The atomic simulation environment a Python library for working with atoms. Journal of Physics: Condensed Matter, 29(27): 273002. https://doi.org/10.1088/1361-648x/aa680e
Liu, J.-X., Filot, I. A. W., Su, Y., Zijlstra, B., Hensen, E. J. M. (2018). Optimum particle size for gold-catalyzed CO oxidation. The Journal of Physical Chemistry C, 122(15): 8327-8340. https://doi.org/10.1021/acs.jpcc.7b12711
Louis, C. (2007). Gold nanoparticles: recent advances in CO oxidation. Nanoparticles and Catalysis, 475-503. https://doi.org/https://doi.org/10.1002/9783527621323.ch15
Lu, B.-J., Li, X.-T., Zhao, Y.-J., Wang, Z.-Y.,Yang, X.-B. (2017). Structural stabilities and electronic properties of Mg28-nAln clusters: A first-principles study. AIP Advances, 7(9): 95023. https://doi.org/10.1063/1.5000792
Miedema, A. R., de Boer, F. R., de Chatel, P. F. (1973). Empirical description of the role of electronegativity in alloy formation. Journal of Physics F: Metal Physics, 3(8): 1558-1576. https://doi.org/10.1088/0305-4608/3/8/012
Momma, K., Izumi, F. (2011). Vesta for three-dimensional visualization of crystal, volumetric and morphology data. Journal of Applied Crystallography, 44(6): 1272-1276. https://doi.org/10.1107/S0021889811038970
Nasrabadi, H. T., Abbasi, E., Davaran, S., Kouhi, M., Akbarzadeh, A. (2016). Bimetallic nanoparticles: Preparation, properties, and biomedical applications. Artificial Cells, Nanomedicine and Biotechnology, 44(1): 376-380. https://doi.org/10.3109/21691401.2014.953632
Perdew, J. P., Ruzsinszky, A., Csonka, G. I., Vydrov, O. A., Scuseria, G. E., Constantin, L. A., Zhou, X., Burke, K. (2008). Restoring the density-gradient expansion for exchange in solids and surfaces. Phys. Rev. Lett., 100(13): 136406. https://doi.org/10.1103/PhysRevLett.100.136406
Prati, L., Villa, A., Jouve, A., Beck, A., Evangelisti, C., Savara, A. (2018). Gold as a modifier of metal nanoparticles: effect on structure and catalysis. Faraday Discussions, 208: 395-407. https://doi.org/10.1039/C7FD00223H
Pundlik, S. S., Kalyanaraman, K., Waghmare, U. V. (2011). First-principles investigation of the atomic and electronic structure and magnetic moments in gold nanoclusters. The Journal of Physical Chemistry C, 115(10): 3809-3820. https://doi.org/10.1021/jp102482g
Roldán, A., González, S., Ricart, J. M., Illas, F. (2009). Critical size for O2 dissociation by Au nanoparticles. ChemPhysChem, 10(2): 348-351. https://doi.org/https://doi.org/10.1002/cphc.200800702
Stradi, D., Jelver, L., Smidstrup, S., Stokbro, K. (2017). Method for determining optimal supercell representation of interfaces. Journal of Physics: Condensed Matter, 29(18): 185901. ArXiv.
Tojo, C., Buceta, D., López-Quintela, M. A. (2017). On metal segregation of bimetallic nanocatalysts prepared by a one-pot method in microemulsions. Catalysts, 7(2): 68. https://doi.org/10.3390/catal7020068
Yadav, J., Saini, S. (2020). Atop adsorption of oxygen on small sized gold clusters: Analysis of size and site reactivity from restructuring perspective. Computational and Theoretical Chemistry, 1191: 113014. https://doi.org/https://doi.org/10.1016/j.comptc.2020.113014
Yao, Y., Huang, Z., Hughes, L. A., Gao, J., Li, T., Morris, D., Zeltmann, S. E., Savitzky, B. H., Ophus, C., Finfrock, Y. Z., Dong, Q., Jiao, M., Mao, Y., Chi, M., Zhang, P., Li, J., Minor, A. M., Shahbazian-Yassar, R., Hu, L. (2021). Extreme mixing in nanoscale transition metal alloys. Matter, 4(7): 2340-2353. https://doi.org/10.1016/j.matt.2021.04.014
Zaleska-Medynska, A., Marchelek, M., Diak, M., Grabowska, E. (2016). Noble metal-based bimetallic nanoparticles: the effect of the structure on the optical, catalytic and photocatalytic properties. Advances in Colloid and Interface Science, 229: 80-107. https://doi.org/https://doi.org/10.1016/j.cis.2015.12.008
Zhang, S.-T., Li, C.-M., Yan, H., Wei, M., Evans, D. G., Duan, X. (2014). Density functional theory study on the metal–support interaction between Ru cluster and anatase TiO2(101) surface. The Journal of Physical Chemistry C, 118(7): 3514-3522. https://doi.org/10.1021/jp409627p