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ABSTRACT: Green chemistry, based on the principles of Paul Anastas and John Warner, promotes 
the sustainable synthesis of gold nanoparticles (AuNPs) by reducing the use of toxic substances 
and minimizing hazardous waste. Traditional methods, which employ reducing agents such as 
sodium borohydride (NaBH4), generate harmful by-products, while green approaches use natural 
agents such as plant extracts and microorganisms that act as reductants and stabilizers, without 
generating toxic waste. These methods are not only safer, but also improve the biocompatibility 
of AuNPs, making them much more suitable for biomedical applications, notably drug delivery, 
targeted therapies and molecular diagnostics. The use of natural sources and biocatalysts, such 
as enzymes or microorganisms, facilitates synthesis under mild conditions, allowing greater con-
trol over the shape and size of AuNPs. These nanoparticles can be designed to specifically target 
cells, improving the efficacy of cancer treatments and reducing adverse effects. In this paper, we 
present the main features and advantages of green synthesis of AuNPs for a promising alternative 
with significant applications in nanomedicine and other technological areas.
KEYWORDS: green nanotechnology, nanotoxicology, bionanocompatibility, gold nanoparticles, 
green chemistry. 

RESUMEN: La química verde, basada en los principios de Paul Anastas y John Warner, promueve la 
síntesis sostenible de nanopartículas de oro (AuNPs) reduciendo el uso de sustancias tóxicas y 
minimizando los residuos peligrosos. Los métodos tradicionales, los cuales emplean agentes re-
ductores como el borohidruro de sodio (NaBH4), generan subproductos nocivos, mientras los 
enfoques verdes utilizan agentes naturales como extractos de plantas y microrganismos actuan-
do como reductores y estabilizadores, sin generar residuos tóxicos. Estos métodos no solo son 
más seguros, sino que también mejoran la biocompatibilidad de las AuNPs, haciéndolas mucho 
más adecuadas para aplicaciones biomédicas, en particular para la administración de fármacos, 
las terapias dirigidas y los diagnósticos moleculares. El uso de fuentes naturales y biocatalizado-
res, como enzimas o microrganismos, facilita la síntesis en condiciones suaves, lo cual permite un 
mayor control sobre la forma y el tamaño de las AuNPs. Estas nanopartículas pueden ser diseña-
das para dirigirse específicamente a las células, mejorando la eficacia de los tratamientos contra 
el cáncer y reduciendo los efectos adversos. En este artículo, presentamos las principales carac-
terísticas y ventajas de la síntesis verde de nanopartículas de oro como una alternativa promete-
dora con importantes aplicaciones en nanomedicina y otras áreas tecnológicas. 
PALABRAS CLAVE: nanotecnología verde, nanotoxicología, bionanocompatibilidad, nanopartí-
culas de oro, química verde. 
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Introduction 

Since about the first quarter of the 21st century, the research, development 
and application of nanoparticles (NPs) has increased significantly (Prakash et 
al., 2024). These particles range in size from 1 to 100 nm in each of their di-
mensions, which means that these materials can be of different chemical 
compositions. Examples include polymeric NPs, carbon-derived NPs, lipids, 
metal oxides, and metallic NPs, for example aurum nanoparticles (AuNPs). 
Due to their unique chemical properties and remarkable ability to interact 
with light, the AuNPs have been extensively studied (Kiio et al., 2021). 

AuNPs exhibit special properties compared to their macroscale counter-
parts. They possess a unique combination of physicochemical properties 
that are crucial for their applications in various fields such as electronics, ca-
talysis and the development of molecular sensors. The latter application is of 
particular interest in the biomedical field. Some of the most notable proper-
ties of AuNPs are their exceptional chemical stability, especially in their col-
loidal form, their ability to be biocompatible in biological systems, and their 
remarkable optical properties exemplified by the localized surface plasmon 
resonance (LSPR) (figure 1) effect (Fan et al., 2020; Bhatia et al., 2023).

However, despite their considerable importance, the conventional syn-
thesis of AuNPs is subject to several limitations, primarily relating to their 
biocompatibility and the environmental safety of their removal and disposal. 
The conventional synthesis methods usually use toxic and hazardous chem-
ical reagents such as sodium borohydride (NaBH4 ) in conjunction with sur-
factants and solvents of organic character, which directly affect human health 
and consequently their biomedical applications (Kimling et al., 2006; Dong et 
al., 2020; Oliveira et al., 2023).

In addition, they generate by-products and intermediates that require 
appropriate handling and disposal. Despite their traditional effectiveness in 
controlling size, morphology and yield of AuNPs, chemical synthesis pro-

FIGURE 1. General scheme of LSPR effect. 

Source: Author’s elaboration. Image created with BioRender.
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cesses are the subject of studies and have led to various proposed changes due 
to their negative impact on the use of AuNPs as biomaterials, their environ-
mental impact and the toxicological risks associated with their industrial im-
plementation (Yah et al., 2013; Wuithschick et al., 2015; Dvorakova et al., 
2022).

In view of these problems, a branch of chemical synthesis known as 
“green synthesis” has been proposed as a means of developing AuNPs that 
offer safer, less toxic and more environmentally friendly alternatives. Green 
chemistry is the development of chemical processes that minimize or elimi-
nate the use and generation of toxic residues, with the goal of minimizing bi-
ological and environmental impacts (Anastas and Warner, 2000 & 2005). 
This approach is based on the 12 basic principles proposed by Paul Anastas 
and John Warner in 1998, which advocate the use of safer reagents and 
chemicals and/or chemicals of natural origin (derived directly from nature) 
(Anastas and Warner, 1998; Anastas and Eghbali 2010).

The application of the principles of green chemistry to the synthesis of 
AuNPs has led to the development of novel methods that effectively reduce 
or virtually eliminate the use of toxic reagents. One notable advance is the in-
troduction of reducing agents and surfactant stabilizers derived from biolog-
ical and natural sources, including plant extracts, bacteria, fungi and other 
living organisms. These processes are commonly referred to as biosynthesis 
or green synthesis as they utilize natural compounds from said extracts, such 
as flavonoids, terpenoids and polyphenols, to form AuNPs (figure 2) (Panda 
et al., 2011; Ahmed et al., 2016). 

In addition to biosynthesis, there are other green synthesis methods, 
such as the use of distilled water or Milli-Q water instead of toxic organic 
media and the use of biocompatible reducing agents such as ascorbic acid or 
sodium citrate, which can be easily degraded by the human body and the eco-
system (Ojea-Jiménez et al., 2010; Merza et al., 2012).

FIGURE 2. General scheme of AuNPs synthesis using biological extracts.  

Source: Author’s elaboration. Image created with BioRender.
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Nevertheless, the use of green synthesis is not without its drawbacks. 
These include issues of scalability and reproducibility arising from the lack of 
precision in optimizing the concentrations used in these methods. This is be-
cause different extracts may contain different amounts of the desired sub-
stances. In addition, the control of the size and morphology of AuNPs is not 
uniform in these methods. 

Taking these considerations, various research groups have proposed al-
ternative methods in the field of nanoscience, with a particular focus on the 
application of AuNPs in different areas.

This review explains the principles of green chemistry and the synthesis 
methods used for AuNPs and describes their benefits and applications in bio-
medicine. It also highlights the shortcomings of these methods and provides 
insights into possible ways to analytically optimise AuNP synthesis.

Principles of green chemistry in the synthesis of AuNPs

To apply the principles of green chemistry as outlined by Paul Anastas and 
John Warner to the synthesis of AuNPs, it is necessary to understand the be-
nefits that can be achieved during the synthesis process. The most important 
of these benefits are listed below.

Avoiding the generation of toxic waste is one of the main goals of green 
chemistry. One of the basic tenets of green chemistry is the reduction or even 
elimination of toxic waste, which requires the development of processes that 
minimize or eliminate the generation of hazardous by-products. Traditional 
methods for the synthesis of AuNPs of different shapes and sizes usually in-
volve the use of reducing agents such as NaBH4. However, this approach has 
been shown to be a source of toxic and hazardous by-products that can re-
main as residues in colloidal dispersions for biological and/or biomedical ap-
plications (Altuwayjiri et al., 2022).

Consequently, the application of green chemistry in the synthesis of 
AuNPs facilitates the development of synthetic routes in which precursors 
achieve high quantitative yields in the generation of NPs while reducing the 
generation of waste products from toxic reagents. For example, the use of re-
ducing agents has been explored, including the use of natural or biocompat-
ible stabilizers from plants, microorganisms or biomolecules that do not gen-
erate toxic by-products. In addition to facilitating the reduction of gold salt 
ions to metallic gold, plant extracts can also stabilize AuNPs without the need 
for additional surfactants, further reducing the generation of toxic waste 
(Bhattarai et al., 2018; Asiya et al., 2020).

It is important to optimize the efficiency of the chemical equilibrium. 
Maximizing efficiency is due to increasing the percentage of reactant mole-
cules incorporated into the final NPs. This contrasts with the traditional syn-
thesis processes for AuNPs, where some molecules or atoms cannot be fully in-
corporated into the desired final product, resulting in waste. Consequently, 
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the goal of green chemistry is to improve the efficiency of the synthesis path-
ways to maximize the conversion or integration of these chemical species into 
the NPs. This approach reduces the quantity of reagents required and there-
fore the amount of waste produced. Examples of these reactions include 
methods in aqueous or single-phase media, where postponing the reaction re-
sults in the highest possible conversion of the desired product(s), avoiding the 
formation of unnecessary by-products (Paciotti et al., 2006; Ovais et al., 2017).

The use of biocompatible raw materials is a basic principle of green chem-
istry in the synthesis of AuNPs. This approach involves the modification of 
toxic chemical reagents with the aim of replacing them with biocompatible 
and renewable alternatives. Traditionally, reducing agents are among the 
most toxic substances used in this process. Therefore, the use of natural sub-
stances from plant extracts and/or microorganisms, which act as both re-
ducing agents and stabilizing surfactants, has gained importance (Sharma et 
al., 2012; Meléndez-Villanueva et al., 2019). For example, extracts of green 
tea, aloe vera, turmeric, peppermint and neem leaves have been shown to 
contain reducing substances, including citric acid and tannic acid, which ef-
fectively reduce the Au (III) present in the precursor salt to metallic Au(0) 
during the synthesis of AuNPs, eliminating the need for additional reagents. 
These extracts not only have a reducing effect, but also the ability to act as 
stabilizers for the AuNPs formed, eliminating the need for toxic surfactants 
such as cetyltrimethylammonium salts (Gurunathan et al., 2014; Elia et al., 
2014; Fadaka et al., 2021). Conversely, the use of microorganisms, including 
bacteria, fungi and algae, has been shown to be effective in the production of 
AuNPs under mild conditions. This approach offers a significant advantage in 
the form of biocompatible NPs in colloidal dispersion (Zhaleh et al., 2019).

Reducing energy consumption is a major advantage of this approach. 
Green chemistry strives to reduce energy consumption by using mild reac-
tion conditions such as ambient temperature and pressure. This is a signifi-
cant advantage over conventional methods of synthesizing AuNPs, which 
often require high temperatures or long reaction times, resulting in increased 
energy costs and environmental impact.

Green synthesis methods, in which plant extracts are used as reducing 
agents, allow reaction rates to be accelerated without the need for an external 
energy source. In addition, alternative energy sources, such as solar radia-
tion, have been investigated to accelerate the synthesis of AuNPs while re-
ducing energy consumption (Singh et al., 2013; Das et al., 2010).

Biocatalysts: in many chemical processes, including the synthesis of 
AuNPs, catalysts are essential to increase the efficiency and quantitative part 
of the reaction. However, many of these catalysts are toxic and have a high 
market value due to their chemical nature, which includes precious or heavy 
metals (Zhao et al., 2013; Priecel et al., 2016). Nevertheless, green chemistry 
advocates the use of catalysts that are neither toxic nor difficult to remove 
from the reaction system. An alternative is the use of biocatalysts, such as en-
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zymes, which can accelerate the reaction process of AuNPs without generating 
toxic residues. This can include the use of plant extracts or microorganisms. 
Certain microorganisms, such as Rhodopseudomonas capsulata, can facilitate 
the reduction of gold ions to AuNPs under mild biological conditions (He et al., 
2007 & 2008; Singh et al., 2014; Menon et al., 2017).

The synthesis of AuNPs from plant extracts is of great importance for the 
reduction of toxicity in the environment and the possibility of large-scale syn-
thesis at lower cost (Yang et al., 2013). These extracts can serve as reducing 
and stabilizing agents in the synthesis of NPs of different shapes and sizes. 
Due to their accessibility and physicochemical properties, plant extracts have 
been used for the conversion of metal salts into NPs, a process that has at-
tracted considerable attention in recent years (Clemente et al., 2017).

The use of these extracts for the biosynthesis of AuNPs has gained im-
portance due to the potential of these particles to be used as biomarkers, sen-
sors and carriers of molecules of interest, as well as their potent antibacterial 
activity (Ikram et al., 2015). The synthesis of AuNPs using plant extracts is a 
straightforward, one-step process. During the reduction of gold ions to NPs, 
the plant extracts themselves act as stabilizers and surfactants and facilitate 
the formation of the NPs. For example, it has been documented that those 
medicinal plants such as Cucurbita pepo and Malva crispa have been used to 
synthesize spherical AuNPs that are used in the food industry as antibacterial 
agents against pathogens that cause spoilage of certain fruits (Chandran et 
al., 2019).

In another documented case, an aqueous extract of Acalypha indica leaves 
was used to synthesize AuNPs with a size of 20 to 30 nm. These NPs were 
then used in targeted cancer therapy in various cell lines. The synthesis of 
AuNPs with a triangular shape was achieved using lemon leaf extract, which 
is mainly composed of ascorbic acid (vitamin C) (Krishnaraj et al., 2014). Sim-
ilarly, AuNPs ranging in size from 5 to 100 nm were synthesized from ex-
tracts of Syzygium aromaticum using the flavonoid-like molecules present in 
this plant (Raghunandan et al., 2010). The reductive-stabilizing effect of agri-
cultural waste products, such as banana peels, was also investigated and led 
to the synthesis of AuNPs with an average size of 300 nm (Bankar et al., 
2010). In addition, extracts of Mentha piperita, Madhuca longifolia, Suaeda mo-
noica, Stevia rebaudiana, Coleus amboinicus and Zingiber officinale were used 
(Mubarak et al., 2011; Mohammed et al., 2011; Arockiya et al., 2014; Sadeghi 
et al., 2015; Narayanan et al., 2010; Kumar et al., 2011). In addition, other 
plants have also been used to synthesize AuNPs in a range of shapes and 
sizes. The data presented in table 1 illustrates the diversity of plant extracts 
used in the last five years and reflects the dynamic advances in nanotech-
nology synthesis.

Most of the molecules contained in these plant extracts that are respon-
sible for reducing the formation of NPs are flavonoids, ascorbic acid, tannic 
acid and citric acid. However, this approach has some disadvantages. The 
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concentration of chemical species derived from plant extracts is not fully 
regulated, leading to the formation of AuNPs with different sizes and shapes. 
Consequently, the desired physicochemical properties cannot be fully opti-
mized or controlled

Synthesis through microorganisms

The synthesis of AuNPs was also carried out using microorganisms, as these 
are easy to handle. In addition, the medium is inexpensive, and the resulting 
waste is biocompatible and environmentally friendly (Sehgal et al., 2018).

Synthesis can occur intracellularly or extracellularly, depending on the 
site of formation. In the first process, the specific gold ions originating from 
the precursor salt are transported to the cell wall or membrane, which has a 
negative electrical charge. This enables more efficient ion transport through 
electrostatic attraction and diffusion. In this mechanism, the enzymes present 
in the cell walls or membranes reduce Au(III) to metallic gold, facilitating the 
formation of AuNPs (Menon et al., 2017; Shedbalkar et al., 2014). In the extra-

TABLE 1. Synthesis of AuNPs using various plant extracts.

Extract Size and shape of AuNPs References

Plum peel 8-10 nm, quasi-spherical polyhedra Vorobyova et al. (2024)

Halimeda macroloba 18-20 nm, quasi-spherical polyhedra Lavanya et al. (2024)

Acorus calamus 30-50 nm, quasi-spherical polyhedra Peng et al. (2024)

Vitis vinífera, 
Buchananialanzan, Phoenix 

dactylifera
 ---, quasi-spherical polyhedra, rods Patil et al. (2023)

Andrographis paniculata 40 nm, quasi-spherical polyhedra, 
triangles & hexagons Do-Dat et al. (2023)

Papaya peel 10-15 nm, quasi-spherical polyhedra Anadozie et al. (2022)

Polianthes tuberosa 50-70 nm, quasi-spherical polyhedra & 
triangles Alghuthaymi et al. (2021)

Mentha longifolia 36 nm, quasi-spherical polyhedra Li, S. et al. (2021)

Pimenta dioica 20-30 nm, quasi-spherical polyhedra Fadaka et al. (2021)

Sambucus wightiana 10-20 nm, triangles, cubes, hexagons y 
decaedres Khuda et al. (2021)

Platycodon grandiflorum 30-80 nm, triangles & octaedres Anbu et al. (2020)

Jasminum auriculatum 8-37 nm, quasi-spherical polyhedra Balasubramanian et al. 
(2020)

Litsea cubeba 8-18 nm, quasi-spherical polyhedra Doan et al. (2020)

Simarouba glauca 10 nm, quasi-spherical polyhedra Thangamani et al. (2019)

Annona muricata 25 nm, quasi-spherical polyhedra Folorunso et al. (2019)

Source: Author’s elaboration.
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cellular method, enzymes synthesized by prokaryotic microorganisms and/or 
fungi, such as nitrate reductase, reduce the urea ions present in the NPs to me-
tallic gold (Perotti et al., 2015; Brito et al., 1999).

Both methods have in common that upon contact with heavy metals 
such as gold, the microorganisms employ metal elimination mechanisms 
through ion channels, endocytosis, lipid permeation, metallothionein-medi-
ated transport and other means to facilitate the active excretion of these ions 
from the synthesized AuNPs (Mishra et al., 2013; Nies et al., 1999).

Bacteria-mediated synthesis
Some bacteria can reduce metals such as Fe (III) to Fe (0). This ability was in-
vestigated with the aim of reducing Au (III) to Au (0) (Pacioni et al., 2015). 
The adsorption of these ions occurs via the transport of vesicles, with protein 
enzymes being responsible for the reduction during this process. This pre-
vents the formation of toxic residues for microorganisms. The synthesis of 
AuNPs by these methods usually leads to a high degree of uniformity in size 
and shape and thus to a well-defined crystal structure. Nevertheless, due to 
the lack of precise control over the synthesis of AuNPs by this method, it is 
challenging to accurately predict their size and shape (Khandel et al., 2016).

Fungal-mediated synthesis
Another category of microorganisms that has recently been researched with 
regard to the development of AuNPs are fungi. They are used because they can 
secrete large quantities of enzymes that are useful for this purpose. This makes 
them suitable for use on a laboratory scale and they are also easily accessible 
and relatively inexpensive (Molnar et al., 2018). Some fungi, such as filamen-
tous fungi, exhibit higher tolerance in bioaccumulation of heavy metals and 
thus facilitate the formation of AuNPs in a faster and more efficient manner.

Specific enzymes are involved in the intracellular biosynthesis method, 
including phytochelatin synthase and glutathione synthetase (Savi et al., 
2012). Most AuNPs synthesized by this method are typically spherical and 
have a diameter of 10 to 20 nm (Xu et al., 2024).

Prokaryote-mediated synthesis
Prokaryotic microorganisms such as actinomycetes, which have characteris-
tics of both prokaryotes and fungi, can be genetically modified to enable their 
metabolism to produce AuNPs of specific size and shape by intracellular mech-
anisms. However, comprehensive modification for preferential synthesis with 
the physicochemical properties of specific AuNPs has yet to be achieved. Some 
of these microorganisms, such as mycobacteria and coryneforms, have already 
been studied for the synthesis of spherical AuNPs (Ahmad et al., 2003).

As mentioned above, the use of these microbial species offers the advan-
tage of accessibility, control and cost efficiency. All these microorganisms 
produce products that are biocompatible with the environment and biolog-
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ical systems, which can be a great advantage in the synthesis of AuNPs. It 
should be noted that the lack of specificity in controlling the physicochemical 
properties of these NPs compared to chemical and traditional methods may 
be a disadvantage that should be considered in future studies. Table 2 shows 
a compilation of AuNPs obtained with microorganisms in the last five years. 
It shows that the predominant shape in this synthesis is spherical, although 
the size varies considerably among the different strains.

Synthesis of AuNPs by colloidal chemistry

The synthesis of AuNPs by colloidal chemistry involves the reduction of metal 
salts in colloidal solutions, both in aqueous and non-aqueous media, using 
traditional reducing agents such as NaBH4. This process allows control of the 
physicochemical properties of the NPs, in particular their size and shape. In 
these cases, the most common starting material is HAuCl4, chloroauric acid 
and its hydrated salts. After reduction in a solution, this leads to the forma-

TABLE 2.  Synthesis of AuNPs using microorganisms.

Extract Size and shape of AuNPs References

Bacteria

Deinococcus radiodurans 30-50 nm, quasi-spherical polyhedra Velmathi et al. (2024)

Sarcophyton crassocaule 5-50 nm, quasi-spherical polyhedra Rokkarukala et al. (2023)

Lysinibacillus odysseyi 20-100 nm, quasi-spherical polyhedra Chowdhury et al. (2022)

Staphylococcus aureus  6-30 nm, quasi-spherical polyhedra Qiu et al. (2021)

Escherichia colli 13 nm, quasi-spherical polyhedra El-Shanshoury et al. (2020)

Bacillus subtilis 13 nm, quasi-spherical polyhedra El-Shanshoury et al. (2020)

Paracoccus haeundaensis 21 nm, quasi-spherical polyhedra Patil et al. (2019)

Vibrio alginolyticus 100-150 nm, irregulars Shunmugam et al. (2021)

Fungi

Trichoderma atroviride, 
Trichoderma asperellum, 

Botrytis cinerea

25, 17 y 93 nm, quasi-spherical 
polyhedra Olvera-Aripez et al. (2024)

Candida rugopelliculosa 10-30 nm, quasi-spherical polyhedra Zhao et al. (2024)

Alternaria chlamydospora 12-15 nm, quasi-spherical polyhedra Ameen et al. (2023)

Penicillium rubens 15 nm, quasi-spherical polyhedra Bhandari et al. (2023)

Aspergillus terreus 9-14 nm, quasi-spherical polyhedra Mishra et al. (2022)

Agaricus bisporus 10-15 nm, quasi-spherical polyhedra  
& poliedrums Krishnamoorti et al. (2021)

Fusarium solani 40-45 nm, flowers & needles Clarence et al. (2020)

Cordyceps millitaris 15-20 nm, cubes Ji et al. (2019)

Source: Author’s elaboration.
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tion of gold nuclei, which subsequently develop into stable anisotropic NPs 
(figure 3) (Zhou et al., 2009).

The Turkevich method is a well-known technique for synthesizing AuNPs 
through colloidal chemistry. Developed by John Turkevich in 1951, this 
method involves reducing HAuCl4 in an aqueous solution with reducing 
agents at elevated temperatures. This process results in the formation of 
spherical AuNPs with sizes typically ranging from 10 to 20 nm (Kimling et al., 
2006). Various research groups have utilized this method to refine the size of 
the NPs by adjusting several parameters, including salt concentration, gold 
salt concentration, and the amount of stabilizer used. One notable modifica-
tion to the Turkevich method is the Brust-Schiffrin approach, which uses 
non-aqueous media and thiols as stabilizing agents, allowing to produce 
AuNPs with sizes between 1 and 5 nm (Brust-Schiffrin et al., 1994). However, 
the presence of toxic reducing agents and non-biocompatible solvents in 
non-aqueous media has prompted investigations into new synthesis methods 
to improve nanoparticle biocompatibility (Ginzburg et al., 2018).

The choice between aqueous and non-aqueous reaction mediums and surfac-
tants plays a crucial role in these syntheses, directly influencing the size, shape, 
and stability of NPs throughout their development (figure 4) (Xiao et al., 2011). 

The adsorption of these molecules on the surface of AuNPs allows for the 
control of their growth and size, preventing aggregation and resulting in par-
ticles with a uniform size. Additionally, the chemical nature of the surfactant 
and the reaction medium can affect the formation of specific shapes, such as 
quasi-spherical polyhedral, rods, tetrahedrons, cubes, and others (figure 5) 
(Smith et al., 2008; Hormozi-Nezhad et al., 2013; Sakai et al., 2009). 

FIGURE 3. AuNPs synthesis process using the colloidal method. 

Source: Author’s elaboration. Image created with BioRender.
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Notable examples of surfactants used for physicochemical control in-
clude cetyltrimethylammonium chloride (CTAC) and cetyltrimethylammo-
nium bromide (CTAB), which are primarily employed to synthesize aniso-
tropic and tip-terminated forms (Li et al., 2014). The chemical compositions 
of surfactants like sodium citrate, polyvinylpyrrolidone (PVP), and sodium 
dodecyl sulfate (SDS) are currently under investigation, as these compounds 
have been shown to enhance the biocompatibility of synthesized AuNPs. 
These are mainly used for spherical forms, since no optimized method has 
been identified for producing stable anisotropic forms (Ginzburg et al., 2018). 
This relates to green synthesis methods mediated by plant extracts, fungi, 
and bacteria, which predominantly yield spherical forms, like those produced 
using the biocompatible surfactants.

The research group led by Zhou and colleagues has proposed a ligand ex-
change method for synthesizing anisotropic AuNPs. They recommend re-

FIGURE 4. Different shapes of AuNPs from quasi-spherical polyhedral seeds. 

Source: Author’s elaboration. Image created with BioRender.

FIGURE 5. Compilation of different shapes of AuNPs observed by TEM. 

From left to right: 
A) Quasi-spherical polyhedral (Hong, Y. A., Ha, J. W., 2022). B). Rods (Zheng, J. et al., 2021). 
C) Tetrahedrons (Scarabelli, L., Liz-Marzán, L. M., 2021). D) Polyhedrons (Sánchez-Iglesias et al., 2016). 
E) Cubes (Romo-Herrera et al., 2016). 
Source: Author’s elaboration. 
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placing (CTAC) or (CTAB), which are commonly used in synthesizing cubic, tri-
angular, cylindrical, and polyhedron-shaped NPs, with sodium citrate. This 
synthesis method can produce particles with specific shapes and sizes, and the 
use of citrate helps reduce toxicity and improve biocompatibility. However, 
the yield of this reaction is not particularly promising (Zhou et al., 2018).

The benefits and applications of green synthesis of AuNPs 
in biomedical research

The green synthesis of AuNPs in various shapes and sizes offers numerous be-
nefits, especially in the field of biomedical research. The following section out-
lines these advantages.

Biocompatibility is a significant advantage of these NPs 
AuNPs synthesized through environmentally friendly methods demonstra-
te high biocompatibility, which means they show minimal or no toxicity at 
the cellular level within biological systems. This property makes them an ex-
cellent option for biomedical applications (Gurunathan et al., 2014).

Because these substances are synthesized without creating toxic resi-
dues, they are less likely to cause adverse reactions. This characteristic allows 
for their safe use in medical diagnostics and the development of advanced 
therapies, including drug delivery systems and targeted treatments (Kus et 
al., 2021; Kadhim et al., 2021; Fan et al., 2009).

Facilitated functionalization is a process that enables the attachment of 
functional groups to the surface of NPs. 

One of the key advantages of AuNPs is their ease of functionalization. 
This characteristic allows for the binding of a wide range of biomolecules, in-
cluding proteins, antibodies, drugs, and nucleic acids. By attaching specific li-
gands to their surface, these particles can be customized for targeted and spe-
cific applications. Additionally, when materials are used without toxic residues 
or incompatible surfactants, they are safer and free from potential adverse ef-
fects (Amina et al., 2020; Tiwari et al., 2011).

Targeted delivery 
AuNPs are particles that possess unique properties, making them highly 
effective for targeted drug delivery. Due to their small size and ability to be 
modified on their surface, AuNPs can carry specific molecules. These NPs 
can be engineered to transport therapeutic agents and release drugs in a 
controlled manner directly at the intended target site. In cancer treatment, 
functionalized AuNPs can selectively target tumor cells, delivering the drug 
directly into them while minimizing damage to surrounding healthy tissues. 
This targeted approach has the potential to reduce the side effects typically 
associated with conventional therapies and improve the overall efficacy of 
treatment (Daraee et al., 2016; Dreaden et al., 2012; Pissuwan et al., 2011).
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Biomedical diagnostics and photothermal therapy 
The localized surface plasmon resonance (LSPR) effect of AuNPs allows them 
to be used in highly sensitive biosensors, which can detect overexpressed 
biomarkers in diseases, even at very low concentrations. AuNPs have been 
particularly useful in diagnostic assays for the quick identification of infec-
tious agents, including viruses and bacteria, as well as the early detection of 
nascent cancer cells. They can also be functionalized to target specific thera-
peutic interventions. Afterward, the NPs are irradiated with lasers in the 
near-infrared spectrum, generating localized heat that can destroy specific 
cells (Tabish et al., 2020; Zeng et al., 2016; Huang et al., 2010).

Tissue regeneration
Nanomaterials, such as AuNPs, are utilized in the field of tissue regeneration 
and engineering. Several studies have been conducted, including research by 
Gutiérrez-Calleja et al. (2021), which demonstrated the ability of mast cells 
to enhance cell proliferation and support tissue regeneration, particularly in 
bone and dermal tissue. Additionally, integrating AuNPs into biocompatible 
scaffolds can create a more favorable environment for cellular regeneration 
(Yadid et al., 2019; Vial et al., 2017; Bodelón et al., 2017).

The main disadvantages of using green chemistry in the synthesis of 
AuNPs arise from the natural variability in the composition of biological sub-
stances, such as plant extracts and microorganisms. This variability is af-
fected by numerous external factors, including geographical location, cli-
mate, and seasonal changes.

The composition and concentration of plant extracts and microbial de-
rivatives can vary based on seasonal and regional factors. For example, the 
use of flavonoids as reducing and stabilizing agents in the synthesis of AuNPs 
can fluctuate in concentration due to external influences such as climate, 
temperature, atmospheric pressure, and soil type. This highlights the direct 
impact that geographical conditions have on the levels of these chemical 
compounds (Quintero-García et al., 2021; Tolic et al., 2017; López-Orenes et 
al., 2017). 

Genetic variations within the same species of plants or microorganisms 
can alter their chemical composition, leading to inconsistent synthesis of 
AuNPs with controlled physicochemical properties (Rao et al., 2009; Santos 
et al., 2016).

When considering the physicochemical properties of particles, the size 
and shape are particularly important in their synthesis. Utilizing natural ex-
tracts can lead to less precise control over the growth of AuNPs, resulting in 
a heterogeneous distribution of sizes and shapes. This variability can affect 
the surface plasmon effect in an unpredictable manner, which may be benefi-
cial for applications such as sensors for biomarkers or in photothermal thera-
pies (Elia et al., 2014; Iravani et al., 2011). Additionally, the use of biological 
products that contain complex molecules often requires multiple reduction 
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processes, making their characterization crucial for process optimization (Al-
brecht et al., 2006).

Compared to traditional methods of synthesizing AuNPs, reactions that 
utilize green chemistry may have slower reaction rates. This slower pace can 
lead to limited short-term efficiency improvements. Such a challenge may 
hinder industrial applications that require fast and high-volume production 
processes (Sheldon et al., 2012; Anastas et al., 2002).

In conclusion, one major drawback is the inferior colloidal stability when 
compared to conventional chemical reagents. For example, using biomole-
cules in the synthesis process leads to their presence on the surfaces of var-
ious AuNPs. This occurs because the stabilizing agents used are not as strong 
as traditional surfactants. It has been established that the aggregation of 
AuNPs alters their optical and catalytic properties, ultimately reducing their 
efficiency in applications (Parveen et al., 2016).

Conclusions and perspectives for the development of new 
green synthesis methods for AuNPs

Green synthesis methods for developing AuNPs have shown significant po-
tential, providing better environmental impact and biocompatibility compa-
red to traditional chemical synthesis methods. Based on this information, we 
can conclude that green chemistry enables the production of AuNPs with im-
proved biocompatibility and a lower risk of toxicity and adverse effects. This is 
particularly important for their use in biomedical applications. Moreover, 
green synthesis can have notable economic benefits, as many of the raw mate-
rials used —such as leaves, shells, or agricultural residues— are abundant and 
inexpensive. This not only reduces costs but also minimizes toxicity risks com-
pared to conventional chemical reagents.

Despite the potential of green synthesis for generating AuNPs, there are 
still several issues and challenges that need to be addressed before it can be 
deemed a viable method. Current protocols require optimization to ensure 
that the physicochemical properties of the NPs such as size and shape are 
consistent and reproducible. This consistency is crucial for their effectiveness 
and application in industrial and biomedical fields.

To tackle these challenges, it is crucial to conduct focused research on bi-
ological sources for synthesizing AuNPs. Utilizing readily accessible and cost-
effective plants or microorganisms, we can achieve this . The goal is to opti-
mize reaction conditions to have better control over the physicochemical 
properties of AuNPs. Additionally, this approach could enable the synthesis 
of a wider variety of AuNP shapes and sizes, thereby broadening their poten-
tial applications in technology and biomedicine.

Research on AuNPs synthesized using green methods could be a valuable 
direction for applications in nanomedicine, including controlled drug de-
livery, targeted therapies, and the development of sensors for medically rele-
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vant biomolecules. Future studies should thoroughly investigate the interac-
tions between AuNPs and biological systems to ensure their safety and 
effectiveness. It is essential to accurately characterize these particles both 
during the synthesis process and in their interactions within nano-biological 
systems.

Establishing clear standards and regulations is essential to ensure that 
the development and production of green NPs focus on sustainability. By 
doing so, we can ensure that these processes align with sustainability princi-
ples. These regulations should address key issues, including the safe produc-
tion, use, and disposal of AuNPs, with the goal of minimizing potential risks 
to the environment and public health.

The implementation of these regulations will promote the broader use of 
green NPs in industrial and medical applications. The benefits to technology 
and the environment are expected to be realized through this expansion 
(Manchikanti et al., 2010; Cely-Bautista et al., 2023).

It is very important to highlight that the wide variety of natural sources 
serves as a basis for further research into the impact of synthesis on AuNPs. 
As time goes on, we can expect a more comprehensive database and compar-
ative results to develop, providing valuable insights into the best methods for 
achieving the desired products. Additionally, the integration of artificial in-
telligence could further enhance this context.
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